SIMATIC NET

DPC31 Siemens PROFIBUS-DP Controller with C31 Core

Hardware Description

Date 06/29/99

Order No. J31070-E2257-R300-A1-0009

SIMATIC NET

DPC31- Hardware Description

(Siemens PROFIBUS-DP Controller with integrated C31 Core according to EN 50170 Volume 2)

> Version: 0.2 Date: 06/99

Liability Exclusion

We have tested the contents of this document regarding agreement with the hardware and software described. Nevertheless, deviations can't be ruled out, so that we are not guaranteeing complete agreement. However, the data in this document is checked periodically. Required corrections are included in subsequent editions. We gratefully accept suggestions for improvement.

Copyright

Copyright (C) Siemens AG 1999. All rights reserved

Unless permission has been expressly granted, passing on this document or copying it, or using and sharing its content is not allowed. Offenders will be held liable. All rights reserved, in the event a patent is granted, or a utility model or design is registered.

The trade marks SIMATIC, SINEC L2 are protected by law for Siemens through application/registration.

All other product and system names are (registered) trade marks of their respective proprietors, and are to be treated as such.

Subject to technical change.

Inhaltsverzeichnis

1	IN	FRODUCTION	6
2	OV	/ERVIEW	7
	2.1	General Data	7
	2.2	Differences Between the DPC31 and the SPC3/SPC4	7
	2.3	Function Overview (Block Diagram)	8
	2.4	Pin Description	10
3	ME	EMORY ASSIGNMENT	11
	3.1	Memory Area Distribution in the DPC31	11
	3.2	Control Unit Parameters (Latches/Registers)	11
	3.3	Organizational Parameters (RAM)	13
4	AS	IC INTERFACE	19
5	CC	OMMUNICATION FUNCTIONS OF THE SEQUENTIAL CONTROL SYSTEM	20
	5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	Request Interface for DPS (Instruction Queue) Acknowledgement Interface (Indication_Queue) DPS Module, Description of the Interface Set_Slave_Address, SSA (SAP55) Set_Param, Prm (SAP61) Check_Config, CCFg (SAP62) Slave_Diagnosis (SAP60) Write_Read_Data (Default SAP) Global_Control (SAP58) Read_Inputs (SAP56) Read_Outputs (SAP57)	20 20 20 22 22 25 27 27 28 30 32 32 32
6	US	SER FUNCTIONS ON THE C31 CONTROLLER	33

7	' DE	SCRIPTION OF THE HARDWARE BLOCKS	34
	7.1 7.1.	Universal Processor Interface .1 Bus Interface Unit (BIU)	34 34
		.2 IO Interface	39
		.3 Interface Signals	40
		.4 Interrupt Controller of the μP Interface in the DPC31	40
	7.1.	interrupt controller of the printerrace in the Dr Cor	40
	7.2	Synchronous Serial Interface (SSC Interface)	43
	7.3	80C31 Core and Interface	47
	7.3.	.1 Reset Phase of the C31	47
	7.3.	.2 80C31 Core and Internal Memory	48
		.3 Expansion Interface to the 80C31 Core	50
		.4 Interface Signals	50
	7.4	C31 Interrupt Controller in the DPC31	51
	7.5	Serial PROFIBUS Interface	51
	7.5.	.1 Asynchronous Physics Unit (NRZ)	51
	7.5.	.2 Synchronous Physics Unit (Manchester)	52
	7.6	DPS Watchdog Timer	60
	7.7	Watchdog Timer	60
		.1 Automatic Baudrate Detection	60
		.2 Baudrate Monitoring	60
	7.7.	.3 Response Monitoring	61
	7.8	Clock Supply	61
	7.8.		61
8	TE	ST SUPPORT	63
	8.1	Emulator Connection for the C31	63
9) ELI	ECTRICAL SPECIFICATIONS	65
	9.1	Maximum Limits	65
	9.2	Permitted Operating Values	65
	9.3	Guaranteed Operating Range for the Specified Parameters	65
	9.4	Power Loss	65
		B 10 II	. -
	9.5	Pad Cells	66
	9.5.	1 11 7 0	66
	9.5.		66
	9.5.	.3 DC Specification of the Pad Cells	68
		AO O a self self a se	
	9.6	AC Specification	68
	9.6.	, ,	68
	9.6.	.2 Timing Diagrams, Signal Run Times	69

10 MECHANICAL SPECIFICATION	81
10.1 PQFP 100 Casing	81
11 DPC31 PINOUT	82
12 APPLICATION NOTES	83
12.1 DPC31 Wiring	83
12.2 PROFIBUS Interface12.2.1 Pin Assignment12.2.2 Wiring Example RS485 Interface	83 83 85
13 APPENDIX	87
13.1 Addresses	87
13.2 General Definitions of Terms	88
13.3 Order Numbers	88

1 Introduction

Siemens offers to its users several ASICs for data exchange between automation devices that, on the basis of EN 50170 Volume 2, support or completely process the data traffic between the individual automation stations.

To support intelligent master/slave solutions, that is implementations with a micro-processor, the following ASICs are available. All ASICs do the following: support the transmission rates of 9.6 kBits/s ... 12000 kbit/s, autonomously set themselves to the transmission rate specified by the master and monitor it. After these ASICs receive a correct message, they autonomously generate the requested response messages.

In the **ASPC2** (Advanced Siemens PROFIBUS Controller), many components of Layer2 of the OSI model are already integrated according to ISO, but it still needs the support of a processor. This ASIC supports baudrates up to 12000 kbit/s; however, in its complexity, it is conceived more for master applications.

The **SPC3** (Siemens PROFIBUS Controller), through the integration of the complete PROFIBUS DP slave protocol, considerably relieves the processor of an intelligent PROFIBUS slave.

However, in the field of automation, there are also simple devices such as switches, thermoelements, etc. that do not require a microprocessor for recording their states.

For a low cost adaptation of such devices, two additional ASICs are available: the **SPM2** (Siemens PROFIBUS Multiplexer, Version 2) and **LSPM2** (Lean Siemens PROFIBUS Multiplexer). These chips process as DP slaves in the bus system.

The LSPM2 has the same functions as the SPM2 but with a lower number of I/O and diagnostic ports.

The **DPC31** (<u>DP</u> <u>C</u>ontroller with integrated 80<u>31</u> core) is a highly integrated PROFIBUS slave ASIC. The DPC31 is a slave controller for both PROFIBUS DP/DPV1 and PA applications.

The uses of this chip cover a wide area. On the one hand, it can be used for simple, intelligent applications that make do with the integrated C31 core.

On the other hand, it can be used for high performance slave solutions that have increased communication requirements. This requirement is met with an internal RAM that has been increased to 6kByte. Approximately 5.5kByte of communication memory is available to the user.

The DPC31 has the following main features:

- integrated standard C31 core with an additional 3rd timer (Timer 2)
- low processor load through the integration of the complete DP slave protocol
- simple processor interface for a large number of processors:

INTEL: 8032, Siemens: C166

Motorola: HC11, HC16, HC916

- SSC interface (SPI) for interfacing serial EEPROMs, A/D converters, etc.
- integration of synchronous as well as asynchronous bus physics

This document explains the hardware configuration and the wiring of the DPC31.

In addition, Siemens offers a separate software package that relieves the user of local H/W register manipulations and memory calculations. The package provides a convenient C-interface for interfacing Profibus communication with the slave process.

80x86

2 Overview

2.1 General Data

Package: 100 Pin PQFP

Baudrate: Asynchronous: 9.6, 19.2, 45.45, 93.75, 187.5, 500 kBd, 1.5, 3, 6 & 12 MBd

Synchronous: 31.25 kBd

Bus Interface: 8-Bit asynchronous/synchronous Intel and Motorola interface

C31 Ports: Standard Port Interface (4 Ports) for external memory expansion and emulator

interface

SSC Interface: Synchronous serial interface (SPI) for connecting serial E²PROMs, A/D converters,

etc.

Memory Area 6 kByte (approx. 5.5 kByte utilizable) can be directly addressed and can be broken

down into data and code memory

Environmental Cond.: 3.3V $\pm 10\%$; -40 to +85 °C

2.2 Differences Between the DPC31 and the SPC3/SPC4

Characteristics	DPC31	SPC3	SPC4	
General:				
Package	100 Pin PQFP	44 Pin PQFP	44 Pin PQFP	
External µP Interface	parallel, 8 bits	parallel, 8 bits	parallel, 8 bits	
Family	Siemens, Intel, Motorola	Siemens, Intel, Motorola	Siemens, Intel, Motorola	
Preprocessing	yes, via int. C31	no	no	
External Memory	yes, Flash, RAM etc.	no	no	
Expansion (C31)	2			
SSC Interface (SPI)	yes, for example E ² PROM	no	no	
	up to 64 kByte,			
1,,,,,	A/D conv. (AD7714)			
I/O Interface	yes, up to 40 bits	no	no	
Internal PLL	yes, input 12 MHz	no	no	
Communication RAM	max. 5.5 kByte	1.4 kByte	1.14 kByte	
PB Communication:			(1.64 for SPC41)	
Baudrate				
async. RS485	9.6 kBd to 12 MBd	9.6 kBd to 12 MBd	9.6 kBd to 12 MBd	
sync. Manchester	31.25kBd	no	31.25 kBd	
Syric. Marichester	31.23KBu	110	31.25 KBu	
DP Slave	fully integrated	fully integrated	partially integrated	
Receive Resources	exchange buffer	exchange buffer	polling list	
	onenige bane.	onenange zamer	peg net	
Integrated User				
Functions:				
E ² PROM Read/Write	yes	no	no	
DPV1 Protocol	Available in FW	no	no	

Table 2.2-1: Differences with respect to SPC3 and SPC4

2.3 Function Overview (Block Diagram)

Figure 2.3-1 shows the block diagram of the DPC31. The DPC31 has a **bus interface** for connecting an external micro-processor. It is a parameterizable, synchronous/asynchronous 8-bit interface for various Siemens, Intel, and Motorola micro-controllers/processors. Via the 13-bit address bus, the user can directly access the internal 5.5k RAM or the register cells. If the application does not need an external processor, the ports of the bus interface can be used as I/O. This makes 27 I/O bits available that the internal C31 can address individually.

The sequence control enters various events (for example, indication events, error events, etc.) in the **interrupt controller** that are signalled to the slave firmware via the interrupt pin. These events can be enabled individually via a mask register. Acknowledgement is made via the acknowledge register.

The SSC interface (SPI) is used for connecting a serial E^2 PROM or an A/D converter (such as AD7714). This interface is laid out only as a master interface.

The **C31** interface includes the ports of the standard controller. Via this interface, an external memory- and I/O expansion can be implemented. Via corresponding CS signals, the code and data address areas are coded out that are not used internally. In addition, up to 13 bits of I/O can be connected via these ports. The C31/32 emulator (Hitex etc.) is also controlled via this interface.

Via the **register cells**, the following are accessed: internal registers, the DPS(DP Slave) control units and the SSC module. The DPS control units represent the user interface to the DPS layer that is implemented via individual buffers. These control units exchange the buffers.

The integrated **C31** is fully compatible with the standard microcontroller. Also integrated is a **256 byte data RAM**. Via a second **interrupt controller**, the interrupt events mentioned above can also be entered in the C31. This makes it possible to distribute interrupt events between an external and an internal application.

The **bus physics unit** includes the asynchronous Layer1 (RS485: 9.6kBd to 12 MBd) and the synchronous Layer1 (IEC 1158-2; Manchester encoded: 31.25kBd) which also allows the chip to be operated in an intrinsically safe environment.

In the **clock unit**, an analog **PLL** is integrated, to which an external 12MHz quartz must be connected. With it, the PLL generates the internal 48MHz clock pulse for the asynchronous mode. In the synchronous mode, the PLL is switched off and an external clock pulse of 4 to 16 MHz is applied. In addition, power management is implemented in the clock unit which switches off internal clock pulses in certain states. As outputs, the internal working clock pulse divided by 2 and by 4 is available.

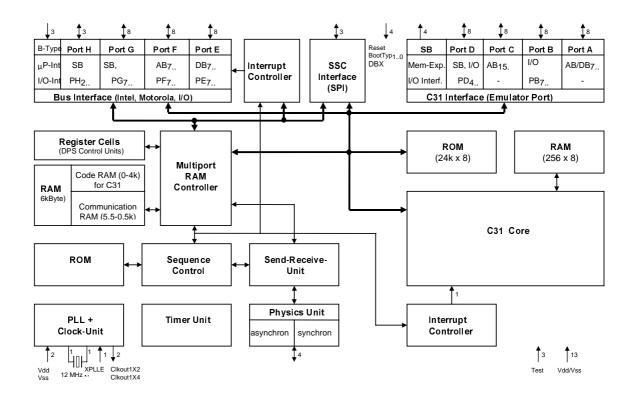


Figure 2.3-1: Block Diagram DPC31

2.4 Pin Description

The DPC31 has a 100 pin PQFP package with the following signals:

Function Group	Name	Pins	Туре	Voltage Proof	Function
C31 Interface	PA	8	I/O	5V	Corresponds to P0 for the discrete type
	PB	8	I/O	5V	Corresponds to P1 for the discrete type
	PC	8	I/O	5V	Corresponds to P2 for the discrete type
	PD	8	I/O	5V	Corresponds to P3 for the discrete type
	ALE	1	I/O	5V	Address Latch Enable
	XPSEN	1	I/O	5V	For emulation only
	XCSDATA	1	0	5V	Chip select for external RAM
	XCSCODE	1	0	5V	Chip select for external ROM
	BOOTTYP	2	I	5V	Type for loading the user program
	DBX	1		5V	Switch to In Circuit Emulator
μP Interface	PE	8	I/O	5V	
	PF	8	I/O	5V	
	PG	8	I/O	5V	
	PH	3	I/O	5V	
	BUSTYP	3		5V	
SSC Interface	SSCLK	1	0	5V	Connection for SPI Chips, Clock
	SSDO	1	0	5V	Connection for SPI Chips, Data_Out
	SSDI	1		5V	Connection for SPI Chips, Data_In
PLL + Clock Unit	XTAL1_CLK	1	I	3.3V	Quartz connection / Clock supply
	XTAL2	1	0	3.3V	Quartz connection
	AVDD	1			Separate V _{DD} supply for PLL
	AGND	1			Separate GND supply for PLL
	XPLLEN	1	I	5V	Switching off the PLL and supply clock pulse via
					XTAL1_CLK
	CLKOUT1X2	1	0	5V	Clock pulse output CLK/2 (without reset)
	CLKOUT1X4	1	0	5V	Clock pulse output CLK/4 (without reset)
Physics Unit	RTS_TXE	1	0	3.3V	
	TXD_TXS	1	0	3.3V	
	XCTS RXA	1	1	5V	
	RXD_RXS	1	1	5V	
General	RESET	1	ı	5V	Reset Input
Test	NTEST1	1	Ī	5V	Test Pin
	NTEST2	1	i	5V	Test Pin
	TST1	1	Ī	5V	Test Pin
Supply	VDD	4		-	+3.3V
115.7	GND	9			0V
Total		100			-

Figure 2.4-1: DPC31 Pin List

Because of the 5V-tolerant I/O, and in order to ensure the least possible power loss, no pull-up or pull-down resistors are integrated in the pad cells; that is, <u>all</u> unused inputs or all output ports (since these are switched as input after reset) are to be applied to one defined level (Ports A, B, D, E, F, G, and H). This is not necessary for Port C since it is permanently configured as output. A bus contention is permitted for a maximum of 20ns.

3 Memory Assignment

3.1 Memory Area Distribution in the DPC31

Table 3.1-1 shows the distribution of the internal 8k address space of the DPC31. Via this address space, the user interface to communication (DPS) is mapped. It does not matter whether the user program is running internally on the C31 or on the external micro-processor; the interface is identical in both cases.

The address area is subdivided into a 2K address space for the register cells and a 6k address space for the internal RAM. The internal registers (interrupt controller, Mode Register1, DPS control units, SSC interface) are located in the register area. Certain registers can only be read or written.

The RAM starts at address 800h. In the first area, the internal work cells are located (bit array, variables). The user is not to access this area. The sequential control system uses these cells for processing the protocol. Starting with address 0840h, the organizational parameters (parameter cells, buffer ptr(pointer) are located in the RAM. In the parameter cells, general parameter assignment data is transferred (Param Register, station address, Ident No., etc.), or status displays are stored (status register, GC_Command, Score_Register, etc.). The buffer pointers describe the entire buffer management for the SAPs. At address 08A0H, the buffers generated by the user start, corresponding to the parameter assignment of the organizational parameters. The sequence of the buffers can be selected as required. All buffers or lists must be located on segment addresses (32 bytes segmentation).

1FFFh		Code Area fo	Code Area for the Internal C31					
08A0h		Communic- ation Area	Buffer Area					
OOAOII								
0840h			Organizational Parameters					
0800h	RAM		Internal Work Area					
			SSC-Interface					
0000h	Register		Control Unit Parameters Latches/Registers					

Table 3.1-1: Memory Area Distribution in the Internal RAM of the DPC31

The stack for the sequential control system needs 64 bytes. A buffer for temporarily storing the receive message requires 32 bytes.

3.2 Control Unit Parameters (Latches/Registers)

The register cells that are, for example, in the interrupt controller and the DPS control units, are located in the address area of 0000-003Ch (XDATA). These cells can either be read or written only. The address assignments are shown in Table 3.2-1. When writing the register cells, the unassigned bit positions are 'don't care'.

Address	Name	Meaning (read access!)
0000h	Int-Req-Reg ₇₀	Interrupt Controller Register
0001h	Int-Req-Reg ₁₅₈	Interrupt Controller register
0002h	Int-Req-Reg ₂₃₁₆	
0002h	Int-Req-Reg ₂₈₂₄	
0003H	Int-Reg ₇₀	
0004H	Int-Reg ₁₅₈	
0005h	Int-Reg ₂₃₁₆	
0000h	Int-Reg ₂₃₁₆	
0007H	IIII-Reg ₂₈₂₄	
	Reserved	
	Reserved	
000Fh	C24 Control Boniston	Defeate Chapter 4
0010h	C31_Control Register ₇₀	Refer to Chapter 4
0011h	-	
	Reserved	
001Fh	000 D D (D : 1 (/ / 200 : / /
0020h	SSC_Rcv-Buf ₇₀	Receive buffer of the SSC interface
0021h	SSC_Sts-Reg ₃₀	Status register of the SSC interface
0022h	SSC_Ctrl1-Reg ₇₀	Control register of the SSC interface
0023h	SSC_Ctrl2-Reg ₂₀	Control register of the SSC interface
0024h	4	
	Reserved	
002Fh		
0030h	User_SSA_Ok Cmd ₁₀	The user acknowledges the user SSA data of an SSA message positively
0031h	User_Prm_Ok Cmd ₁₀	The user acknowledges the user parameter assignment data of a prm message positively
0032h	User_Prm_Not_Ok Cmd ₁₀	The user acknowledges the user parameter assignment data of a prm message negatively
0033h	Reserved	
0034h		
0035h	User_Cfg_Ok Cmd ₁₀	The user acknowledges the configuring data of a CfG message positively
0036h	User_Cfg_Not_Ok-Cmd ₁₀	The user acknowledges the configuring data of a Cfg message negatively
0037h	User_Diag_Read-Cmd	The user makes a new diag buffer available
0038h	User_Get_Cfg_Read-Cmd	The user makes a new Get_Cfg buffer available
0039h	User_New_Din-Cmd ₁₀	The user makes a new Din buffer available
003Ah	User_Din_Puffer-State ₇₀	The user reads the current Din buffer assignment
003Bh	User_New_Dout-Cmd ₃₀	The user fetches the last Dout buffer from the N state
003Ch	User_Dout_Puffer-State ₇₀	The user reads the current Dout buffer assignment
003Dh	2.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Reserved	
07FFh		
071111		

Table 3.2-1: Assignment of the Internal Register Cells for READ

0000h	Int-Req-Reg ₇₀	Interrupt Controller Register
0001h	Int-Req-Reg ₁₅₈	
0002h	Int-Req-Reg ₂₃₁₆	
0003h	Int-Req-Reg ₂₈₂₄	
0004h	Int-Ack-Reg ₇₀	
0005h	Int-Ack-Reg ₁₅₈	
0006h	Int-Ack-Reg ₂₃₁₆	
0007h	Int-Ack-Reg ₂₈₂₄	
0008h	Int-Mask-Reg ₇₀	
0009h	Int-Mask-Reg ₁₅₈	
000Ah	Int-Mask-Reg ₂₃₁₆	
000Bh	Int-Mask-Reg ₂₈₂₄	
000Ch	Int-EOI-Reg ₀	
000Dh		
000Eh	reserved	
000Fh		
0010h	C31_Ctrl-Reg ₆₀	Refer to Chapter 6
0011h	Mode-Reg1-Set ₇₀	Refer to Chapter 6
0012h	Mode-Reg1-Reset ₇₀	Refer to Chapter 6
0013h	User_InstQ_Write-Cmd ₇₀	Transfers a new request to the sequential control system
0014h		
	reserved	
001Fh		
0020h	SSC_Transmit-Buf ₇₀	Receive buffer of the SSC interface
0021h	SSC_Sts-Reg ₇₀	Status register of the SSC interface
0022h	SSC_Ctrl1-Reg ₇₀	Control register of the SSC interface
0023h	SSC_Ctrl2-Reg ₂₀	Control register of the SSC interface
0024h	SSC_Int_Enable-Reg ₃₀	Interrupt_Enable register of the SSC interface
0025h	SSC_Baudrate-Reg ₇₀	Baudrate register of the SSC interface
0026h		
	reserved	
07FFh		

Table 3.2-1: Assignment of the Internal Register Cells for WRITE

3.3 Organizational Parameters (RAM)

The organizational parameters are stored by the user in the RAM under the addresses specified in the table below. These parameters primarily describe the parameter cells and the buffer pointers of the communication profile (buffer management).

0800h		
000011	reserved	Internal Work Area
083Fh	reserved	internal Work Area
0840h	Status-Register ₇₀	see below
0841h	Status-Register ₁₅₈	see below
0842h		see below
0843h	Param-Register	see below
0844h	Param-Register	see below
0845h	Param-Register ₂₃₁₆	
0846h	Param-Register ₃₁₂₄	Profibus station Address of the DPC31 (this slave)
0847h	TS_Adr_Register ₆₀ Real_No_Add_Change ₇₀	This parameter indicates whether the DP slave address may be changed
004711	Real_NO_Add_Change ₇₀	at a later time. After reset, the slave firmware must set this parameter if it
		permits the Set_Slave_Address SAP.
		0 = Address may be changed
		Otherwise = Address may not be changed
		If the DPC31 then receives a Set_Slave_ Address message, it enters the
		current value here.
0848h	WD_Baud_Control_Val ₇₀	The root value for baudrate monitoring is parameterized.
0849h	Interframe GAP_Time ₅₀	The Interframe GAP time (432 bits) is to be parameterized here for
		synchronous bus physics.
084Ah	DPS_User_Wd_Val ₇₀	In the DPS_Mode, the user is monitored with an internal 16-bit watchdog
		timer. The timer is decremented every 10 msec and must be reset by the
		user cyclically to the start value 'DPS_User_ WD_Value ₁₅₀ '. Resetting,
		enabling, and disabling the timer is initiated with 'DPS_User-Wd' request
		in the Instruction_Queue.
084Bh	DPS_User_Wd_Val ₁₅₈	
084Ch	reserved	Preset with 0
084Dh	GC_Command ₇₀	GC command last received
084Eh	Ident_Low ₇₀	PNO Ident Number Low
084Fh	Ident_High ₇₀	PNO Ident Number High
0850h	reserved	Preset with 0
0851h	reserved	Preset with 0
0852h	reserved	Preset with 0x47
0853h	reserved	Preset with 0x48
0854h	reserved	Preset with 0x4B
0855h	reserved	Preset with 0
0856h	InstQ_Base-Ptr ₇₀	0x4D (segment pointer to the instruction queue)
0857h	InstQ_Length ₇₀	0x1E (length of the instruction queue in bytes (multiple of the length of an entry -> n*5))
0858h	InstQ_Read-Ptr ₇₀	Byte offset to the next entry to be read (preset with 0x00)
0859h	InstQ_Write-Ptr ₇₀	Byte offset to the next free entry (preset with 0x00)
085Ah	IndQ_Base-Ptr ₇₀	0x4E (segment pointer to the indication queue)
085Bh	IndQ_Length ₇₀	0x1E (length of the indication queue in bytes (multiple of the length of an entry -> n*3))
085Ch	IndQ_Read-Ptr ₇₀	Byte offset to the next entry to be read (preset with 0x00)
085Dh	IndQ_Write-Ptr ₇₀	Byte offset to the next free entry (preset with 0x00)
085Eh	Dout_Puffer-Length ₇₀	Length of the 4 Dout buffers
085Fh	Dout_Puffer1-Ptr ₇₀	Segment Pointer to Dout Buffer1
0860h	Dout_Puffer2-Ptr ₇₀	Segment Pointer to Dout Buffer2
0861h	Dout_Puffer3-Ptr ₇₀	Segment Pointer to Dout Buffer3
0862h	Dout_Puffer4-Ptr ₇₀	Segment Pointer to Dout Buffer4
0863h	Din_Puffer-Length ₇₀	Length of the 3 Din buffers
0864h	Din_Puffer1-Ptr ₇₀	Segment Pointer to Din Buffer1
0865h	Din_Puffer2-Ptr ₇₀	Segment Pointer to Din Buffer2
000311	Dill_1 ulle12-1 tl70	Ocymone i olitei to bili bulleiz

Page 14

00001-	Di- D-#0 Dt-	On was not Delintanta Din Duffano
0866h	Din_Puffer3-Ptr ₇₀	Segment Pointer to Din Buffer3
0867h	User_SSA_Puffer-Ptr ₇₀	Segment Pointer to User SSA Buffer
0868h	MAC_SSA_Puffer-Ptr ₇₀	Segment Pointer to Mac SSA Buffer
0869h	User_Prm_Puffer-Ptr ₇₀	Segment Pointer to User Prm Buffer
086Ah	MAC_Prm_Puffer-Ptr ₇₀	Segment Pointer to Mac-Prm Buffer
086Bh	reserved	Preset with 0
086Ch	reserved	Preset with 0
086Dh	User_Cfg_Puffer-Ptr ₇₀	Segment Pointer to User Cfg Buffer
086Eh	MAC_Cfg_Puffer-Ptr ₇₀	Segment Pointer to Mac Cfg Buffer
086Fh	User_Diag_Reply_Puffer- Ptr ₇₀	Segment Pointer to User-Diag Buffer
0870h	MAC_Diag_Reply_Puffer- Ptr ₇₀	Segment Pointer to Mac Diag Buffer
0871h	User_GCfg_Reply_Puffer- Ptr ₇₀	Segment Pointer to User-Get-Cfg Buffer
0872h	MAC_GCfg_Reply_Puffer- Ptr ₇₀	Segment Pointer to Mac-Get-Cfg Buffer
0873h	MAC_GC_Puffer-Ptr ₇₀	Segment Pointer to Global Ctrl Buffer
0874h		
	reserved	Preset with 0x00
08FFh		
0900h		
	reserved	Preset with 0xFF
095Fh		
0960h		
	reserved	Preset with 0x00
099Fh		
09A0h		Space for 6 instructions
	Instruction Queue	Preset with 0
09BFh		
09C0h		Space for 10 indications
	Indication Queue	Preset with 0
09DFh		
09E0h		
	Buffer Area	
6000h		
000011		ı

Table 3.3-2: Assignment of the Organizational Parameters

Meaning of the Register Cells:

Status Register:

WD-S	tate ₁₀	DPS-State ₁₀		0	Diag_Flag	0	MAC State
1	0	1	0				
7			4		2		0

	DPC31 Release ₃₀							Baudrate ₃₀					
3	3 2 1 0							2		1		0	
15												8	

The status register displays the current MAC status, the DPS status, and the watchdog timer status. In addition, the baudrate that was found, and the release number of the DPC31 is also entered.

MAC State: The state of the MAC

=0 The MAC is in the 'Offline' state=1 The MAC is in 'Passive Idle'

Diag_Flag: State Diagnostic Buffer

=0 The diagnostic buffer was fetched by the master (if Diag.Stat_Diag=0).

=1 The diagnostic buffer was not fetched by the master.

DPS-State_{1..0}: The state of the DPS State Machine

=00 State 'Wait_Prm'=01 State 'Wait_Cfg'=10 State 'Data_Exchange'

WD-State_{1..0}: The state of the Watchdog SM

=00 State 'Baud_Search' =01 State 'Baud_Control' =10 State 'DP_Control'

Baudrate_{3..0}: The baudrate found by the DPC31

=0000 12 MBd (asyn.) =0001 6 MBd (asyn.) =0010 3 MBd (asyn.)

=0011 1.5 MBd (asyn.), 31.25 kBd (syn.)

=0100 500 kBd (asyn.) =0101 187.5 kBd (asyn.) =0110 93.75 kBd (asyn.) =0111 45.45 kBd (asyn.) =1000 19.2 kBd (asyn.) =1001 9.6 kBd (asyn.)

DPC31-Release number of the DPC31: The release number consists of two groups.

 $\label{eq:decompatible} DPC31\text{-Release}_{1..0}\text{: numbers the compatible versions}$

DPC31-Release_{3..2}: is the index within a compatible version.

=0000 DPC31 Step A Rest not possible so far

Param Register:

In the Param Register, individual parameter bits are transferred that are to be changed only in the MAC state 'Offline', however. When the request 'MAC_Start' (refer to Chapter 5.1.2) is executed, these parameters are distributed by the sequential control system to the individual modules. Subsequent changes are not taken into account.

0	Early_	EOI_	Quick_Sync	GIM_EN	XRTS/	0	0
	Ready	Timebase	_New		ADD		
7							0
0	0	New_GC_ Int_Mode	0	1	Freeze_ Supported	Sync_ Supported	DP_Mode
15						•	8
0	0	1	En_Change _Cfg_Puffer	XAsyn/Syn			
23						•	
0	0	0	0	0	1	Preamble ₁	Preamble ₀
				27			24

XRTS/ADD: Switchover Output TxE (syn. physics) for different driver control

=0 RTS Signal. =1 ADD Signal

GIM_EN: Galvanic Isolation Mode for syn. physics

=0 The power-saving interface is switched off

=1 The power-saving interface is switched on (possible only for 31.25kBd)

Quick Sync New: Switching on the improved guick sync

=0 The improved quick synchronizer is off.=1 The improved quick synchronizer is on.

EOI_Timebase: Time base of the EOI timer

=0 The interrupt inactive time is 1 to 2 μ sec . =1 The interrupt inactive time is 1 to 2 msec.

Early Ready: Early Ready Signal

=0 Ready is generated if the data is valid (Read) or if the data is taken over (write).

=1 Ready is moved ahead by one clock pulse.

DP_Mode: Enable of DPS

=0 DPS is not enabled.=1 DPS is enabled.

Sync_Supported: Support of Sync_Mode

=0 The Sync_Mode is not supported.

=1 The Sync_Mode is supported. Data is made available in the N-Buffer of the Dout-

SM (not comparable to ASIC LSPM 2).

Freeze_Supported: Support of Freeze_Mode

=0 The Freeze Mode is not supported.

=1 The Freeze_Mode is supported. Data is frozen from the N-buffer of the Din SM

(not comparable to LSPM 2).

New_GC_Int_Mode: Interrupt Mode for 'New_GC_Command'

=0 The 'New_GC_Command Int' is generated only if there is a change in the

'GC_Command' (basic setting).

=1 The 'New_GC_Command Int' is generated for each receipt of a GC message.

XAsyn/Syn: Setting the bus physics

=0 Asynchronous physics; the work clock pulse is fixed at 48 MHz (via PLL) Baudrate: 9.6 kBd to 12 MBd (basic setting)

=1 Synchronous physics; the work clock pulse can be set: 2, 4, 8 or 16 MHz Baudrate: fixed at 31.25 kBd

En_Change_Cfg_Buffer: Enable of the

buffer exchange (User_Cfg_Buffer for MAC_GCfg_Rbuffer)

=0 The buffers won't be exchanged.

=1 With 'User_Cfg_Ok Cmd', the above-mentioned buffers are exchanged. The exchange is confirmed with the interrupt 'Get_Cfg_Buffer_Changed'.

Syn_Clkin_{1..0}: Setting the external clock pulse supply at Pin XTAL1_CLK (not via PLL). The internal

C31 processes with half the clock frequency!

=00 External clock = 2 MHz ⇒ Baudrates: 31.25 (not released!)

=01 External clock = 4 MHz ⇒ Baudrates: 31.25 =10 External clock = 8 MHz ⇒ Baudrates: 31.25 =11 External clock = 16 MHz ⇒ Baudrates: 31.25

Preamble_{1..0}: For the syn. physics, the preamble length is parameterized in number of bytes.

=00 \Rightarrow 1 byte =01 \Rightarrow 2 bytes =10 \Rightarrow 4 bytes =11 \Rightarrow 8 bytes

06/99

4 ASIC Interface

Interrupt Controller Register (Int Mask Reg, Int Ack Reg, Int Req Reg, Int and Int EOI Reg):

The meaning of these registers will be explained in later chapters. The interrupt controller exists twice (for ext. μ P and C31). Both are instances are mapped onto the same addresses.

Mode Register1: (ext. μP and C31, write access)

Mode Register1 is used for parameterizing single bits. These bits are control bits and internally directly affect the hardware. The meaning is described below. Different addresses are used for setting and resetting (Mode Register1 set/reset). A logical '1' is written to those bit positions that are to be changed. All other bit positions must be logical. '0'

_Int	0	0	0	Dis_C31	Dis_Clkout1X4	Dis_Clkout1X2	0
Polarity							
7							0

Dis_Clkout1X2: The clock output 'Clkout1X2' is switched off (½ of the internal clock: asyn=24MHz,

syn=1 to 8 MHz). After being switched on and in the reset phase, the output is initially

active.

=0 Clkout1X2 is active (default).

=1 Clkout1X2 is inactive.

 $\label{eq:clkout1X4:} Dis_Clkout1X4: \qquad \text{The clock output `Clkout1X4' is switched off (} \frac{1}{4} \text{ of the internal clock: asyn=12MHz,} \\$

syn=0.5 to 4 MHz). After being switched on and in the reset phase, the output is initially

active.

=0 Clkout1X4 is active (default).

=1 Clkout1X4 is inactive.

Dis_C31: The internal C31 is switched off (clock switched off).

=0 C31 is active (default).

=1 C31 is inactive (absolute powerdown mode).

Int_Polarity: Polarity of the interrupt output

=0 The interrupt output is low-active (basic setting).

=1 The interrupt output is high active.

C31_Control Register: (ext. μP and C31, read/write access)

In the C31_Control register, the settings specific to the C31 are made. The boot type bits are not to be parameterized by the user; the assignment of the chip pins 'BOOTTYP_0/_1' determines the boot type.

.,	0	0	0	Reserv	/ed (0)	Boot Type	
				Bit1	Bit0	Bit1	Bit0
Bit Position	6	5	4	3	2	1	0
Default Value	0	0	0	0	0	-	-
	r/w	r/w	r/w	r/w	r/w	r	r

Boot Type: Settings of the boot type pins for processing in the boot routine by the C31:

=00 Boot Type 1a =01 Boot Type 1b =10 Boot Type 2 =11 Boot Type 3

Presently, only Boot Type 2 is permitted!

5 Communication Functions of the Sequential Control System

PROFIBUS Layer2 and the DP slave module are implemented in the sequential control system. Layer2 is composed of a MAC (media access control) part and an FLC (interface services) part. In the following, the Layer2 module is simply called MAC module. The user can influence only the cells that are described here.

5.1 Setting Up the DP Buffer Structures

To set up the DP buffers, the corresponding buffer pointers are entered in the organizational parameters and the buffers lengths are entered in the buffers. All pointers are 8-Bit segment buffer pointers. During access, the sequential control system adds an 8-Bit offset address to the segment address that has been shifted by 5-Bits (x32) (result: 13-Bit physical address). Therefore, the list and buffer start addresses, have a granularity of 32 bytes.

5.1.1 Structure of the Buffers

Figure 5.1-1 shows the structure of the request buffers and response buffers for the DPS SAPs

SAP Buffers	Header Field:	Reserved Length_Data_Buffer Reserved Reserved Reserved Reserved Reserved
	Data Field:	Data 0 Data 1 Data 243

Figure 5.1-1: Structure of the SAP Buffers

Length_Data_Buffer:

This value specifies the length of the data field in the request buffer. If the net data length of the request message is larger than the available buffer length, the MAC responds with "No Resource'.

Except for the DIN and Dout buffers, the user must enter the length in all buffers!

5.1.2 Request Interface for DPS (Instruction Queue)

User requests to the DPS module are transferred via a request interface. This request list is a polling list onto which the user transfers communication requests. Figure 5.1-2 shows the organization of the Instruction_Queue. With each entry (5 bytes respectively), the user must also transfer the command to the sequential control system. This is done with a write operation with any data value to the register cell 'User InstQ Write Cmd'. The organization of the Instruction Queue includes the following parameters:

InstQ_Base Ptr: The Instruction_Queue segment pointer

InstQ_Length: Describes the length of the Instruction_Queue and is a multiple of the length of an

entry (n*5)

InstQRd Ptr: An Offset_Pointer which points to the next entry that is to be read (and is managed

by the DPC31)

InstQ_Wr Ptr: An Offset_Pointer which points to the next free entry (and is managed by the user)

The queue is empty if 'InstQ_Wr ptr' and 'InstQ_Rd ptr' point to the same position. One entry in the queue always must remain empty (wildcard, any content!); otherwise, an empty queue can't be distinguished from a full queue. The user must control the wrap in the queue. After each entry, the user places the InstQ_Wr ptr behind this entry on the next free position. If this is the end of the queue, the InstW_Wr ptr will then have to be placed on the beginning of the queue (wrap around).

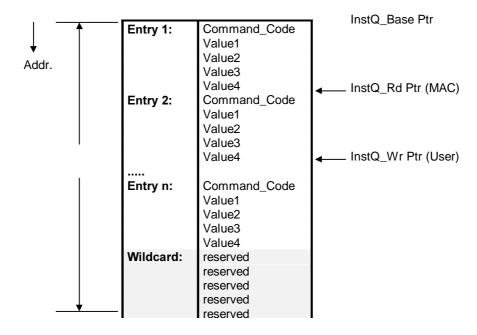


Figure 5.1-2: Organization of the Instruction_Queue

Table 5.1-3 lists all possible requests with the necessary command codes.

Request	Com_	Value1	Value2	Value3	Value4	Comment
	Code					
MAC_Start	10h	-	-	-	-	MAC enters Pas_ Idle
MAC_Stop	11h	-	-	-	-	MAC enters Offline
MAC_New_T _{RDY}	12h	T _{RDY70}	-	-	-	Transfer of T _{RDY}
User_Leave-	15h	-	-	-	-	The user initiates a 'Leave
Master						Master'
DPS_User_Wd	20h	00h=reset	-	-	-	Control of the DPS User_
		01h=enable				Watchdog timer
		02h=disable				

Table 5.1-3: Overview of User_MAC/DPS Requests

The request 'MAC_Stop' is confirmed for the user after it has been executed. For this confirmation, a corresponding entry is made in the Indication Queue (refer to Chapter 5.1.3).

5.1.3 Acknowledgement Interface (Indication Queue)

FMA confirmations (for example, MAC_Reset con; refer to Chapter 5.1.2) are transferred to the user in an Indication_Queue (polling list). Figure 5.1-3 shows the organization of the Indication_Queue. With each entry (3 bytes respectively), the 'IndQ_Entry Int' is additionally generated for the user. If the queue is full and the MAC is to make another entry, this indication is abandoned and the 'IndQ_Full Int' is set (refer to Chapter 7.1.4). The user should avoid this condition by dimensioning the queue accordingly large. There is no effect on the bus (for example, no RR if the queue is full).

The organization of the Indication_Queue includes the following parameters:

IndQ Base Ptr: The Indication Queue segment pointer

IndQ Length: Describes the length of the Indication Queue, and is a multiple of the length of an

entry (n*3)

IndQRd Ptr: An Offset Pointer and points to the next entry that is to be read (and is managed by

the user)

IndQ_Wr Ptr: An Offset_Pointer and points to the next free entry (and is managed by the MAC)

The queue is empty if 'IndQ_Wr Ptr' and 'IndQ_Rd Ptr' point to the same position. One entry in the queue always has to remain empty (refer to Chapter 5.1.2).

Table 5.1-4 lists all possible indications with the associated command codes.

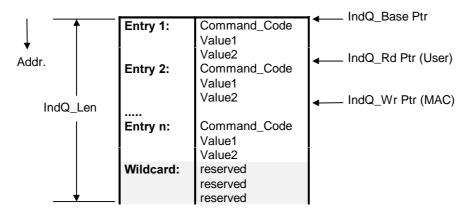


Figure 5.1-3: Organization of the Indication_Queue

Request	Com_Code	Value1	Value2	Comment
MAC_Stop Confirmation	81h	-	-	MAC_Stop was executed
DPS_User WD Expired	84h	-	-	DPS_User Watchdog timer expired

Table 5.1.4: Overview of Indications and Confirmations

Note:

MAC_Stop confirmation confirms the MAC transition to the *Offline mode* after the current request has been processed.

5.2 DPS Module, Description of the Interface

DPS is enabled in the param register with 'DP_Mode=1', and started in the Instruction_Queue with the MAC request 'MAC_Start'. The user can disable the SAP55 (Set_Slave_Address).

The DPS protocol is integrated completely into the DPC31. All other DP SAPs are always enabled except for the following: default SAP, SAP 56, SAP57, and SAP58. The remaining four SAPs are enabled only when the 'Data_Exchange' mode is entered.

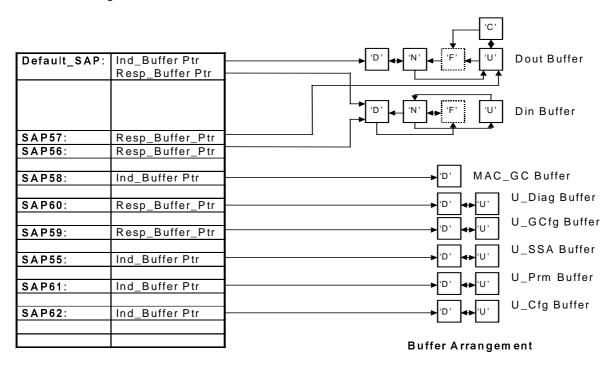


Figure 5.2-1: DPS Buffer Structure

Figure 5.2-1 shows the DPS buffer structure. The buffers (length and buffer ptr) are configured by the user in the 'Offline Mode' in the DPS buffer management.

For the Dout data, four buffers of the same length are available that are implemented as exchange buffers. One buffer each is assigned to the incoming data transfer 'D' and the user 'U'. The third buffer is either in a Next 'N' or Free 'F' mode. The MAC stores the data in 'D'. After receiving, 'D' is moved to 'N', and a new buffer is fetched from the 'N' or 'F'. The user fetches its output data from 'N'. In the fourth buffer 'C', the user makes the substitute values available for the Clear mode (failsafe). If the DPC31 receives Clear messages or if DPS leaves the 'Data_Exchange' mode, the 'C' buffer is transferred to the user in the state 'U'. The buffers are moved through the corresponding exchange. DPS then also performs the buffer exchange for the user.

The Din data is controlled via three exchange buffers of the same length. One buffer each is assigned to the data transfer 'D' and the user 'U'. The third buffer is either in a Next "N" mode, or Free 'F' mode. When sending, the MAC fetches the Din data from 'D'. The user prepares new Din data in 'U' and then moves it to 'N'. DPS then changes the buffers from 'N' to 'D'.

For the diagnostic SAP and the Get_Cfg SAP (SAP60/59), two buffers respectively are available that may have different lengths. The 'D' buffer is always assigned to the MAC for sending and the 'U' buffer belongs to the user for preparing new data. DPS exchanges the buffers upon user request.

In SAP55 (Set_Slave_Address), SAP61 (Set_Param), and SAP62 (Check_Config), one indication buffer respectively is available, to which the received data is stored. At the indication, this buffer is exchanged for the corresponding buffer in DPS buffer management (User_SSA buffer, User_Prm buffer, or User_Cfg buffer) and then the corresponding DPS control unit is triggered.

5.2.1 Set_Slave_Address, SSA (SAP55)

Two exchange buffers of the same length are available for this SAP. One buffer is integrated as indication buffer in the SAP_SCB (MAC_SSA buffer) and the other is included in DPS buffer management as User_SSA buffer. The indication is always transferred to the user in User_SSA Buffer.

The user can disable the SSA service by setting the 'MAC_SSA_Buffer Ptr=00h' at power-up. The DPC31 then responds to an SSA request with 'no service activated'.

The new 'Station Address' and the parameter 'Real_No_Add_Change' are stored by the user and retransferred to the software modules "MAC and DPS" after every restart caused by a voltage failure, for example.

If the DPC31 receives a Set_Slave_Address message, and if the SAP55 is enabled, the MAC first checks whether the indication buffer has the corresponding size. If not, the MAC responds with 'No Resource'. Otherwise, it sends a short acknowledgement and after the send process transfers this buffer to the DPS module. The MAC has already accepted the new station address, however.

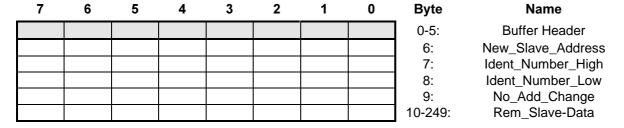


Figure 5.2-2: Assignment in the Data Field of the SSA Indication Buffer

In the following states, the DPS module ignores the SSA indication:

- DP_SM mode 'Wait_Cfg', 'Data_Exchange'
- Net data length less than 4 bytes
- Parameter 'Real_No_Add_Change' is 'True' (FFh)
- New station address is larger than 125
- Ident No. is wrong

User_SSA_OK Cmd (Read Operation):

0	0	0	0	0	0	User_Ack₁	User_Ack ₀
	User_Ack ₁₀ = 00 ⇒						k ₁₀ = 00 ⇒
			User	_SSA_I	Finishe	d	
						User_Ac	$k_{10} = 01 \Rightarrow SSA_Conflict$
						User_Ac	$k_{10} = 11 \Rightarrow Not_Allowed$
						User_Ac	$k_{10} = 10 \Rightarrow \text{not possible}$

Table 5.2-5: Coding of User SSA OK Cmd

The acknowledgement 'User_SSA_OK Cmd' is a read access to a register cell with the corresponding codes 'Not_Allowed', 'User_SSA_Finished', or 'SSA_Conflict'.

The SSA_State_Machine is reset also when the DPS is powered up -that is, after the user has transferred 'MAC_Start' in the request list- or the watchdog has expired in the mode 'DP_Control'. If the SSA message is repeated because the short acknowledgement was faulty on the bus, the MAC ignores it because it has already accepted the new station address.

5.2.2 Set_Param, Prm (SAP61)

For this SAP, two exchange buffers of the same length are available. One buffer is integrated as the indication buffer (MAC_Prm buffer) and the other is located as the User_Prm buffer in DPS buffer management. The indication is always transferred to the user in the User_Prm buffer.

The DPS module accepts this request in any DPS mode (Wait_Prm, Wait_Cfg, Data_Ex). However, the message has to have at least a length of >= 7 bytes; otherwise, it is ignored.

7	6	5	4	3	2	1	0	Byte	Name
								0-5:	Buffer Header
Lock_ Reg	Unlock_ Reg	Sync_ Reg	Freeze_ Req	WD_ On	Res.	Res.	Res.	6:	Station Status
- '								7:	WD_Fact_1
								8:	WD_Fact_2
								9:	MinTSDR
								10:	Ident_Number_High
								11:	Ident_Number_Low
								12:	Group_Ident
DPV1_ Enable	Failsafe	res	res	res.	WD_	res	res	13:	DPV1_Status_1
Enable					Base				(Spec_User_Prm_Byte)
								14:	DPV1_Status_2
								15:	DPV1_Status_3
								16-249:	Rem_Slave-Data

Figure 5.2-3: Assignment in the Data Field of the PRM Indication Buffer

Byte 13 is permanently reserved for the DPC31 and **must not** be used for User Prm data. The bytes 13 to 15 are reserved according to DPV1 and **should not** be used for User Prm data in order to make a compatible change to DPV1 possible.

DPS evaluates the first 7 bytes or the first 10 bytes for longer Prm messages (refer to Figure 5.2-3). The evaluation is performed according to EN 50 170 Volume 2 and will not be discussed in more detail in this description.

In the case of negative validation, DPS sets corresponding diagnostic bits and branches into the 'Wait_Prm mode'. If the master requests 'Sync_Req' or 'Freeze_Req' and the application does not support 'Sync' or 'Freeze' (Sync_Supported=0, Freeze_Supported=0 in the param register), the Prm message is not accepted and the diagnostic flag 'Diag.Not_Supported = 1' is set. In case of positive validation (new, valid message), DPS makes the transition to 'Wait_Cfg', and executes the following responses, depending on the data length:

- If 'Lock_Req = 0' and 'Unlock_Req = 0', only the parameter 'MinTSDR' is accepted internally (S/R unit) and no response is initiated to the user. If 'MinTSDR = 00H', the old value is saved. The S/R unit waits at least 11 T_{Bit} prior to sending its response messages. If a MinTSDR < 11 is parameterized, the time is set to 11 by the ASIC.
- If 'Lock_Req = 1' and 'Unlock_Req = 0', the DPS accepts the following values: Flag: WD_ON; watchdog factors: WD_FACT1/2; the min station delay response: MinTSDR (if it differs from 0 and >10); group generation: Group_Ident; the master address: Master_Add. For messages that are longer than 7 net parameter data bytes, the bits from the Spec_User_Prm_Byte are also accepted; otherwise, these bits are assigned default values. The user indication New Prm_Data is then triggered.

The acknowledgements 'User_Prm_OK cmd/User_Prm_Not_OK cmd' are read accesses to defined register cells with the corresponding messages 'Not_Allowed', 'User_Prm_Finished', or 'Prm_Conflict' (refer to Table 5.2-6).

User Prm OK Cmd (Read Operation):

0	Λ	Λ	Λ	0	0	User Ack₁	User Ack₀
U	U	U	U	U	U	USEI_ACK1	0361_ACK()

User_Ack_{1..0}= 00 \Rightarrow User_Prm_Finished User_Ack_{1..0} = 01 \Rightarrow Prm_Conflict

User_Ack_{1..0} = 11 \Rightarrow Not_Allowed User_Ack_{1..0} = 10 \Rightarrow not possible

User Prm Not OK Cmd (Read Operation):

- 1								
	•	•	_	_	_	_		I I A -I -
	()	()	()	()	()	()	User Ack₁	User Ack₀
	•	•	•	,	•	•	333.	333

User_Ack_{1..0}= 00 \Rightarrow User_Prm_Finished User_Ack_{1..0} = 01 \Rightarrow Prm_Conflict User_Ack_{1..0} = 11 \Rightarrow Not_Allowed

 $User_Ack_{1..0} = 10 \Rightarrow not \ possible$

Table 5.2.6: Coding of User_Prm_(Not)_OK Cmd

06/99

5.2.3 Check Config, CCFg (SAP62)

For this SAP, two exchange buffers of the same length are allocated. One buffer is integrated as the indication buffer (MAC_Cfg buffer) and the other is included as the User_Cfg buffer in DPS buffer management. The indication is always transferred to the user in the User_Cfg buffer.

This service is accepted by DPS in any DP mode. If the Check_Config message does not come from 'Master_Add' i.e., the locking master, DPS ignores this message.

The user evaluates the configuration data. After DPS has received a plausible Cfg message, there will be an indication. That is, DPS exchanges the indication buffer in the Cfg SAP for the User_Cfg buffer from DPS buffer management and generates the 'New_Cfg_Data interrupt'. There is no response at this time in the DP_SM. The user must then check the 'User_Config_Data' and acknowledge either positively or negatively (see below).

User Cfg Ok Cmd (Read Operation):

0	0	0	0	0	0	User_Ack₁	User_Ack ₀
User_(Cfg_No	t_Ok Cr	nd (Rea	ad Opera	ition):	User_Ack ₁₀ = User_Ack ₁₀ =	: 00 ⇒ User_Cfg_Finished : 01 ⇒ Cfg_Conflict : 11 ⇒ Not_Allowed : 10 ⇒ not possible
0	0	0	0	0	0	User_Ack₁	User_Ack ₀

User_Ack_{1..0} = 00 \Rightarrow User_Cfg_Finished User_Ack_{1..0} = 01 \Rightarrow Cfg_Conflict User_Ack_{1..0} = 11 \Rightarrow Not_Allowed User_Ack_{1..0} = 10 \Rightarrow not possible

Table 5.2.7: Coding of User_Cfg_(Not)_OK Cmd

During operation, if the interrupts 'New_Prm_Data' and 'New_Cfg_Data' are pending at the user at the same time, the user must follow the sequence Set Param and then Check Config acknowledgement.

5.2.4 Slave_Diagnosis (SAP60)

The diagnostic data of DPS in the DPC31 can be fetched by the master any time.

When the buffers are exchanged by the user, the internal 'Diag_Flag' is set in. Furthermore, the Diag_Flag is entered in the status register. If 'Diag_Flag' is activated, the MAC responds at the next Write_Read_Data message with high priority response data. This signals to the associated master that new diagnostic data is present at the slave. If DPS does not have any input data, it responds with a high-priority SD2 message with a dummy net byte (00h). After this high priority reply, the master fetches the new diagnostic data with a Slave_Diagnosis message. The 'Diag_Flag' is then reset and the user 'Diag_Fetched interrupt' is generated. However, if the user signals 'Diag.Stat_Diag = 1" (static diagnosis; refer to structure of the Diagnosis_Reply buffers), the 'Diag_Flag' remains activated even after the associated master has fetched the diagnosis. The user can poll the 'Diag_Flag' in the status register.

DPS sets 'Diag_Flag=0' for 'Power_On', caused by a reset or the startup of the watchdog timer in the 'DP_Control mode'; or 'Diag_Flag = 1' when entering 'Data_Exchange'.

The Diag_Buffer_SM is also reset when DPS is powering up. That is, after the user has transferred 'MAC_Start' in the request list or the watchdog has expired in the 'DP_Control' mode.

Structure of the Diagnosis Reply Buffers:

The user transfers the Diagnostic_Reply buffer shown in Figure 5.2-4. The buffer control area is located in the first 6 bytes. In the 7th byte, the user only enters the bit 'Diag.Ext_Diag' and in the 8th byte the bit 'Diag.Stat_Diag'. The remaining bits in these two bytes can be assigned as required. The user sets up Byte 9 (StationStatus_3), Byte 11,12 (Ident_Number) and Byte 13..250 (Ext_Diag data) completely. Byte 10 is used as wildcard for 'Master_Add' and can be assigned as required. During buffer exchange, DPS enters the internal Diagnosis_Flags in Bytes 7 and 8 and also enters the 'Master_Add' in Byte 10 (refer to Figure 5.2-5).

7	6	5	4	3	2	1	0	Byte	Name
								0-5:	Buffer Header
-	-	-	-	Diag.Ext _Diag	-	-	-	6:	StationStatus_1
-	-	-	-	-	-	Diag.Stat_ Diag	-	7:	StationStatus_2
Diag.Ext Diag_ Overflow	0	0	0	0	0	0	0	8:	StationStatus_3
-	-	-	-	-	-	-	-	9:	Wildcard
								10:	Ident_Number_High
								11:	Ident_Number_Low
								12-249:	Ext_Diag-Data

Figure 5.2-4: Structure of the User_Diag_Reply Buffer

7	6	5	4	3	2	1	0	Byte	Name
								0-5:	Buffer Header
0	Diag. Prm_ Fault	0	Diag.Not Sup- ported	Diag.Ext _Diag	Diag. Cfg_ Fault	Diag. Station_ Not_Rdy	0	6:	StationStatus_1
0	0	Diag. Sync_ Mode	Diag. Freeze_ Mode	Diag. WD_On	1	Diag. Stat_ Diag	Diag. Prm_ Req	7:	StationStatus_2
Diag.Ext Diag_ Overflow	0	0	0	0	0	0	0	8:	StationStatus_3
								9:	Master_Address
								10:	Ident_Number_High
								11:	Ident_Number_Low
								12-249:	Ext_Diag-Data

Figure 5.2-5: Structure of the MAC_Diag_Reply Buffer

5.2.5 Write Read Data (Default SAP)

The MAC accepts the Write_Read_Data message only in the 'Data_Exchange' mode and only from the 'Master_Add' i.e., the locking master; otherwise, a negative acknowledgement 'RS' is generated. If the received net data (output data) does not fit into indication buffer 'D', the service is ignored and the response is 'no resource'.

The length of the indication buffer 'D' corresponds exactly to the data output configuration of the respective slave. If the received output data is less than the length of the indication buffer, there is a configuration error. In this case, DPS does the following: it sets 'Diag.Cfg_Fault =1 ' (refer to diagnostic data), executes the 'Leave_Master macro' transitioning to 'Wait_Prm') and transmits the input data from the response buffer. Otherwise, the received net data is written to the assigned indication buffer and the net data that is to be sent is fetched from the assigned response buffer.

For the output data, 4 exchange buffers are available and for the input data, 3 exchange buffers.

With the read operation 'User_Dout_Buffer state', the user receives the current buffer assignment without initiating a buffer exchange!

User_New_Dout Cmd (Read Operation):

0	0	0	0	U_Buffer_Cleared	U_Buffer_State	U_Buffer₁	U_Buffer ₀
		U_I	U_Buffer ₁₀ =0	$U_Buffer_{10}=00 \Rightarrow Buffer4$			
		U_I	U_Buffer ₁₀ =0	01 ⇒ Buffer1			
		U_I	$U_Buffer_{10}=10 \Rightarrow Buffer2$				
		U_Buffer ₁₀ =1	1 ⇒ Buffer3				

User_Dout_Buffer State (Read Operation):

F_Buffer₁	F_Buffer ₀	U_Buffer₁	U_Buffer ₀	N_Buffer₁	N_Buffer ₀	D_Buffer₁	D_Buffer ₀	
F/N-E	Buffer ₁₀ = 00 =	⇒ Nil	U-Buffer	₁₀ = 00 ⇒ Buf	fer4 D	-Buffer ₁₀ =00= possible	⇒not	
F/N-E	$Buffer_{10} = 01 =$	⇒ Buffer1	U-Buffer	$_{10}$ = 01 \Rightarrow Buf	fer1 D	D-Buffer ₁₀ = $01 \Rightarrow Buffer1$		
F/N-E	$Buffer_{10} = 10 =$	⇒ Buffer2	U -Buffer ₁₀ = 10 \Rightarrow Buffer2			D-Buffer ₁₀ = $10 \Rightarrow Buffer2$		
F/N-E	$Buffer_{10} = 11 =$	⇒ Buffer3	U-Buffer	$_{10}$ = 11 \Rightarrow Buf	fer3 D	D-Buffer ₁₀ = $11 \Rightarrow$ Buffer3		

Table 5.2-8: Coding of User_New_Dout Cmd, User_Dout_Buffer State

With the read operation 'User_Din_Buffer State', the user receives the current buffer assignment without the buffer being exchanged!

User_New_Din Cmd (Read Operation):

0	0	0	0		0	0		U_	Buffer₁	U_Buffer ₀
$\begin{array}{c} U_Buffer_{10}=00\Rightarrow not\\ U_Buffer_{10}=01\Rightarrow B\\ U_Buffer_{10}=10\Rightarrow B\\ U_Buffer_{10}=11\Rightarrow B\\ \end{array}$ $\begin{array}{c} U_Buffer_{10}=10\Rightarrow B\\ U_Buffer_{10}=11\Rightarrow B\\ \end{array}$									⇒ Buffer1 ⇒ Buffer2	
F_Buff	fer₁ F	_Buffer ₀	U_B	uffer₁	U_Buffer ₀	N_Buffer₁	N_Bu	uffer ₀	D_Buffer₁	D_Buffer ₀
F/N -Buffer ₁₀ = 00 \Rightarrow Nil U/D-Buffer ₁₀ =00 \Rightarrow not possible										

 $\begin{array}{c} \text{possible} \\ \text{F/N-Buffer}_{1..0} = 01 \Rightarrow \text{Buffer1} \\ \text{F/N-Buffer}_{1..0} = 10 \Rightarrow \text{Buffer2} \\ \text{F/N-Buffer}_{1..0} = 11 \Rightarrow \text{Buffer3} \\ \end{array}$

Table 5.2-9: Coding of User_New_Din Cmd and User_Din_Buffer State

At startup, the DP_SM goes to 'Data_Exchange' only after a positive user acknowledgement of User_Cfg_OK cmd' has followed a Check_Config message, and additionally, the first valid Din buffer was made available in 'N' with the 'User_New_Din cmd'.

DPS User Watchdog:

After power-up ('Data_Exchange' mode), it is possible that the DPC31 continuously replies to Write_Read_Data messages without the user fetching the received Dout buffers or making new Din buffers available. If the user processor should "hang", the master would not notice it. For that reason, a 'DPS_User

watchdog' is implemented in DPS. This timer can be enabled or disabled any time via the request interface (DPS_User WD, Enable; or DPS_User WD, Disable).

Note: In the case of the SPC3, the processor is monitored via a counter.

The DPS_User_Watchdog is an internal 16bit RAM cell that is started by a user-parameterized value 'DPS_User WD Value_{15..0}', and is decremented every 10 msec. If the timer reaches the value '0000h', DPS does the following: it executes 'Leave_Master', locks the DPS_User WD, and enters the event 'DPS_User_WD Expired' in the Indication_Queue.

The user has to cyclically set this timer to its initial value. To do this, the user must transfer 'DPS_User WD, Reset' via the request interface. DPS then reloads the timer to the parameterized value 'DPS_User WD Value_{15 0}'.

With 'DPS_USER WD, Enable' request, the DPS_User WD is automatically set to its initial valu and started.

5.2.6 Global Control (SAP58)

The MAC accepts the Global_Control message only in the 'Data_Exchange' mode and only from 'Master_Add'. Under all other instances, the service is ignored. If more than two net data bytes (Control_Command, Group_Select) are received (refer to Table 5.2-10) or if there is no indication buffer, DPS also does not accept this service.

7	6	5	4	3	2	1	0	Byte	Name
								0-5:	Buffer Header
Res.	Res.	Sync	Unsync	Freeze	Unfreeze	Clear_ Data	Res.	6:	Control_Command
								7:	Group_Select

Table 5.2-10: Data Format of the Global Control Message

The parameter Group_Select establishes which group(s) is(are) to be addressed. The Global_Control message becomes effective if the bit by bit AND operation of the Group_Ident, transferred in the Set_Parameter message, with the Group_Select parameter supplies a value unequal to 0 on at least one bit position. If Group_Select is equal to 0, all slaves are addressed.

06/99

Byte Control_Command:

Bit 7, 6, 0: Reserved

The designation "Reserved" indicates that these bits are reserved for future function expansions. If such a bit is set, DPS sets 'Diag.Not_Supported=1', and the "Leave_Master macro' is executed. However, if the user parameterizes 'Check_No_GC_Reserved=1' in the param register, the Reserved bits are not checked.

Bit 5: Sync

The output data transferred with a Write_Read_Data message is changed from 'D' to 'N' (DX_OUT interrupt is generated). The subsequently transferred output data is kept in 'D' until the next 'Sync' command is made. The same reaction occurs for

'Sync_Supported=0' as does for a set Reserved bit.

Bit 4: Unsync

The command 'Unsync' cancels the 'Sync' command. In addition, as in the case of 'Sync' the proviously transferred output data is changed from 'D' to "N'

'Sync', the previously transferred output data is changed from 'D' to "N'.

Bit 3: Freeze

The input data is fetched from 'N' to 'D', and "frozen". New input data will be fetched only if the master sends the next 'Freeze' command. The same reaction occurs for 'Freeze_Supported=0' as does for a set Reserved bit.

Bit 2: Unfreeze

With 'Unfreeze', freezing the input data is cancelled. In addition, as in the case of

'Freeze', new input data that was made available is fetched from 'N' to 'D'.

Bit 1: Clear_Data

With this command, the Dout buffer is not deleted and it is not changed; rather, the mode 'N_Cl=1' is set in the Dout_Buffer_ SM, and the user interrupt 'DX_OUT' is generated. If the user then fetches his new Dout data, the C and U buffers are exchanged and the user gets the message 'U_Buffer_Cleared'.

With 'sync', data buffers are made available synchronously. However, this does not provide for synchronous mapping directly to the I/O as is the case with the LSPM2. Although the application is interrupted via the 'DX_OUT interrupt', the transfer time from the buffer that was made available to the I/O is subject to interrupt latency. To bypass it, the interrupt 'DX_OUT' can directly be applied to the port PB3 if a global control message is received with 'Sync', provided 'Enable DX_OUT_Port=1' was parameterized in the C31_Control register beforehand. Thus, external HW support, or separate interrupt processing could bring about the transfer from the buffer to the I/O in a fixed time reference.

With 'Freeze', the available Din buffer in 'N' is frozen to 'D'. Thus, in distinction to the LSPM2, no updating is provided at this time from the I/O. To circumvent this, the user would have to make the input data, if it changes, available immediately in the N buffer (high processor capacity required).

For each valid Global_Control message, the Control_Command byte is stored in the RAM cell 'GC_Command'. At initialization, DPS preassigns FFh (not a valid value) to the RAM cell 'GC_Command'. The user can read and interpret this cell. Depending on the setting of 'New_GC_Int mode' (refer to Param Register), the interrupt 'New_GC_Command' is generated. With 'New_GC_Int mode = 0', the interrupt is generated only if the Control_Command byte for the last received Global_Control message has changed. With 'New GC Int mode=1', the interrupt is generated after each receipt of a GC message.

Failsafe Mode:

To support the failsafe mode, a 'Spec_Clear_Mode' is implemented in the DPC31. The master generates such a Clear mode by sending a Global_Control message with 'Clear_Data=1'. The Din data has to continue to be fetched during this Clear_Mode. For this, the master has to send the Write_Read_Data message with the parameterized number of Dout data bytes=00h. However, in the case of many slave applications, the value 00h does not correspond to the Clear mode (for example, substitute values for analog modules). Here, the user generates the corresponding substitute values. If the Global_Control message was not received because of a bus fault, this slave does not know that it should be in the Clear mode; therefore, the subsequently received Dout data bytes with the value 00h can't be replaced with the substitute values.

To support the failsafe mode, the DPC31 also accepts Write_Read_Data messages without output data even though the parameterized Dout length 'Dout_Buffer length # 0' is set. After the receipt of this message, the C buffer where the substitute values are stored, is then included in the buffer cycle. If the user fetches this

buffer, the display 'U_Buffer_Cleared' is set with 'User_New_Dout command' (refer to Table 5.2-8) and the user receives the information that it is cleared data (substitute values).

5.2.7 Read_Inputs (SAP56)

The Read_Input message is accepted by the MAC only with request data length = 0, in the mode 'Data_Exchange', from any master. For this, DPS enters the corresponding validation values in 'SAP56 of the SAP_SCB'. In the other modes, the DPC31 responds with 'no service activated' (modes 'Wait_Prm, Wait_Cfg') or 'no resource' (request data length # 0).

The exchange of the Read_Input buffer has been described previously. Between the initial call and the repetition if there is a buffer change from 'U' -> 'N' -> 'D' (through User_New_Din command), the new input data is sent at the repetition.

5.2.8 Read_Outputs (SAP57)

The Read_Output message is accepted by the MAC only with request data length = 0, in the mode 'Data_Exchange', from any master. For this, DPS enters the corresponding validation values in 'SAP57 of the SAP_SCB'. In the other modes, the DPC31 responds with 'no service activated/no resource'.

The exchange of the Read_Output buffer has been described previously.

Between the initial call and the repetition if there is a buffer change from 'N' -> 'U' (through User_New_Dout command), the new output data is sent at the repetition.

5.2.9 Get_Config (SAP59)

The Get_Config message is accepted in all modes. If the call message contains request data, the MAC acknowledges with 'no resource'.

06/99

6 User Functions on the C31 Controller

The DPC31 contains an integrated C31 core that is available entirely for user functions. One of the two external interrupts (XINT0) is already being used for interfacing the communication component and is therefore no longer available to the application.

7 Description of the Hardware Blocks

7.1 Universal Processor Interface

The DPC31 has a parallel 8-bit interface with a 13-bit address bus. It supports all 8-bit processors and microcontrollers as follows: 80C31/32 by Intel and the Motorola HC11 family. It also supports the 8/16 bit processors and micro-controllers of the 80C166 family by Siemens, X86 by Intel and the HC16/HC916 family by Motorola.

In addition, a clock pulse scaler is integrated which makes the internal work clock pulse (divided by 2 (pin CLKOUT1X2) or 4 (pin CLKOUT1X4) available as system clocks in order to be able to connect a slower controller without additional effort in a lowcost application (refer to Chapter 7.8.1). Both clock outputs can be switched off separately via Mode Register1. For asynchronous physics, the DPC31 is wired to a quartz of 12MHz (XTAL1_CLK, XTAL2). An integrated PLL generates the internally needed work clock pulse (48MHz: refer to Chapter 7.8.1). In the case of synchronous physics, the DPC31 can be operated in a mode that is particularly low in power loss. This can be achieved only for low clock pulse rates. The PLL is switched off in this case (XPLLEN = VDD) and the variable supply clock pulse of (2), 4, 8, or 16 MHz is applied directly to XTAL1_CLK.

7.1.1 Bus Interface Unit (BIU)

The BIU is the interface to the connected processor/microcontroller. It allows the CPU accesses to the internal 5.5kByte dual port RAM and the registers. It is a synchronous or asynchronous 8-Bit interface with a 13-Bit address bus. The interface can be configured via 3 bus type pins (BusType2..0) (refer to Table 7.1-1). With it, the connected processor family (Intel/Motorola bus control signals such as XWR,XRD, and R_W, the – data format) and the synchronous (rigid) or asynchronous bus timing is specified.

Figure 7.1-1, Figure 7.1-2, Figure 7.1-3, and Figure 7.1-4 show different Intel and Motorola system configurations. In the C31 mode, the internal address latch and the integrated decoder must be used. In Figure 7.1-1, the minimum configuration of a system with external μP and DPC31 is shown; the chip is connected to an EPROM version of the controller. In terms of additional components, only a quartz crystal is needed in this configuration. If a controller is to be used without integrated program memory, the addresses have to be latched additionally for the external memory (refer to Figure 7.1-2). The connection diagram in Figure 7.1-3 applies to all Intel/Siemens processors that offer asynchronnous bus timing and interpret the Ready signal.

Notes:

If the **DPC31** is **connected to an 80286** or something similar, it is to be taken into account that the processer accesses words; that is, either a swapper is needed that switches, during reading, the corresponding characters from the DPC31 to the corresponding byte position of the 16-Bit data bus. Otherwise the least significant address bit is not connected and the 80286 must make word accesses and correspondingly only interpret the lower byte as shown in Figure 7.1-3.

06/99

BusType ₂₀	The DPC31 Processor Interface supports the following micro-controllers:
0 1 1 (synchronous Motorola)	MOTOROLA micro-controller with the following features: - Synchronous (rigid) bus; timing without evaluation of XDSACK (PH ₂) - 8-Bit non-multiplexed bus: DB ₇₋₀ (PE ₇₀), AB ₁₂₋₀ (PG ₄₀ , PF ₇₀) The following can be connected: - HC11- types: K, N, M and F1 - HC16- and HC916- types with programmable ECLK timing - For all other HC11-types with a multiplexed bus, the addresses AB ₇₋₀ have to be selected externally from the data DB ₇₋₀ . Address decoder is switched off in the DPC31; CS-signal is supplied from the outside: - For micro-controllers with chip select logic: K, F1, HC16, HC916, the chip selection signals can be programmed regarding the address area, priority, polarity, and the window width in the write and read cycleFor micro-controllers without chip selection logic: N, M and others, an external chip select logic is needed. This means additional HW effort and fixed asignments. Condition: - The DPC31 output clock (CLKOUT1X2/4) has to be at least four times larger than the E Clock. The DPC31 clock (48MHz) has to be at least ten times larger than the desired system clock (E Clock). Pin CLKOUT1X4 is to be wired with this (E_Clock = 3MHz at 48MHz DPC31
0 1 0 (asynchronous Motorola)	clock). MOTOROLA micro-controller with the following features: - Asynchronous bus; timing with evaluation of XDSACK (PH ₂) - 8-Bit non-multiplexed bus: DB ₇₋₀ (PE ₇₀); AB ₁₂₋₀ (PG ₄₀ , PF ₇₀) The following can be connected: - HC16 and HC916 types Address decoder in the DPC31 is switched off; CS signal is applied from the outside - Chipselect signals are present in all micro-controllers and can be programmed.
0 0 1 (synchronous Intel)	INTEL, CPU Basis 80C31/32, micro-controllers of various manufacturers: - Synchronous (rigid) bus timing without XRDY (PH ₂) evaluation - 8-Bit multiplexed bus ADB ₇₋₀ (PE ₇₀), The following can be connected: - Micro-controller families, such as INTEL, SIEMENS, PHILIPS Address decoder is switched on in the DPC31; CS signal is generated internally: - The lower address bits AB ₇₋₀ are stored with the ALE signal in an internal address latch. In the DPC31, the internal CS decoder is activated that generates its own signal from the addresses AB ₁₂₋₀ . The integrated address decoder is permanently wired, so that the DPC31 Always has to be addressed under the fixed addresses AB ₇₀ =000xxxxxb, Whereby the DPC31 selects the corresponding address window from the Signals AB ₄₋₀ In this mode, the CS pin (PG ₆) has to be on VDD (high potential) Wiring: refer to Figure 7.1-1, Figure 7.1-2. Apply ADB ₇₋₀ to DPC31-Pin PE ₇₀ , AB ₁₅₋₈ to DPC31-Pin PF ₇₀ , and the DPC31-Pin PG ₄₀ to VSS.
0 0 0 (asynchronous Intel)	INTEL and SIEMENS 16/8-Bit micro-controller families - Asynchronous bus; timing with evaluation of XRDY (PH ₂) - 8-Bit non-multiplexed bus: DB ₇₋₀ (PE ₇₀); AB ₁₂₋₀ (PG ₄₀ , PF ₇₀) The following can be connected: - Micro-controller families; for example, SIEMENS, 80C16x and INTEL X86 Address decoder in DPC31 is switched off; CS signal is applied from the outside - External address decoding is always required - External chip selection logic, if not available in micro-controller.

Table 7.1-1 The Different Configurations of the Processor Interface

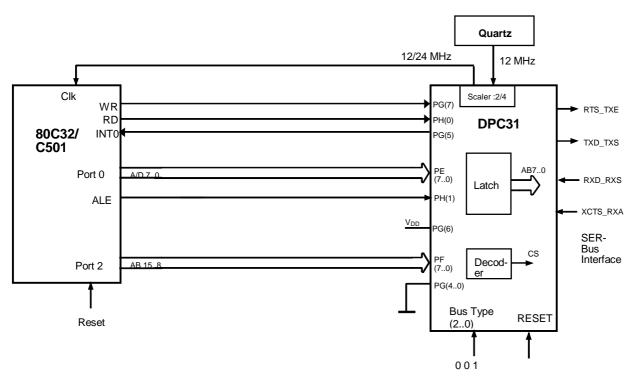


Figure 7.1-1: Low Cost System (C31 Mode)

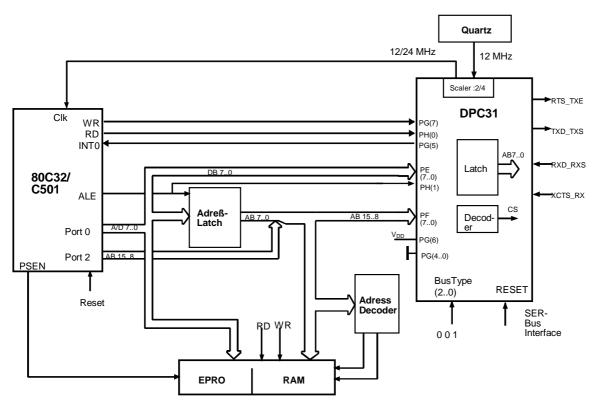


Figure 7.1-2: C31 System with External Memory (C31 Mode)

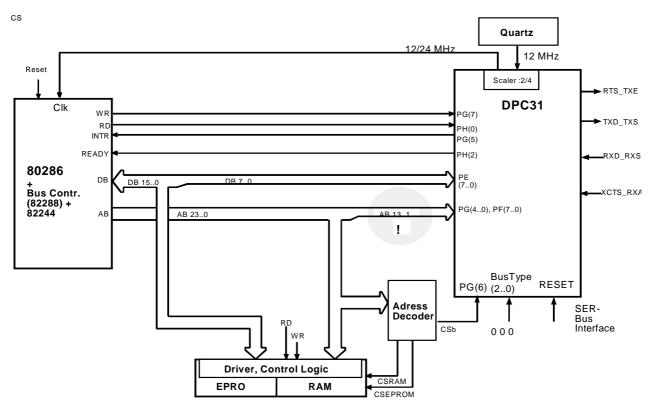


Figure 7.1-3: 80286 System as an Example for Mode X86

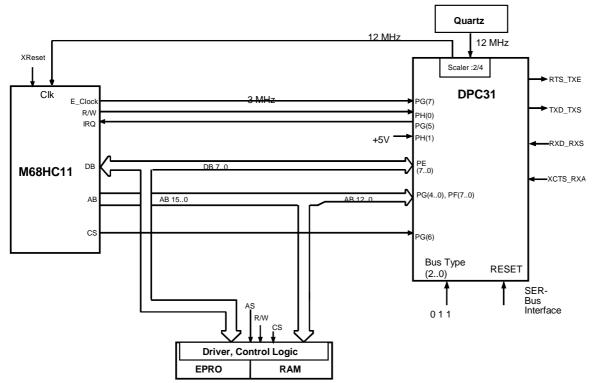


Figure 7.1-4: M68HC11 System as an Example for Synchronous Motorola Mode

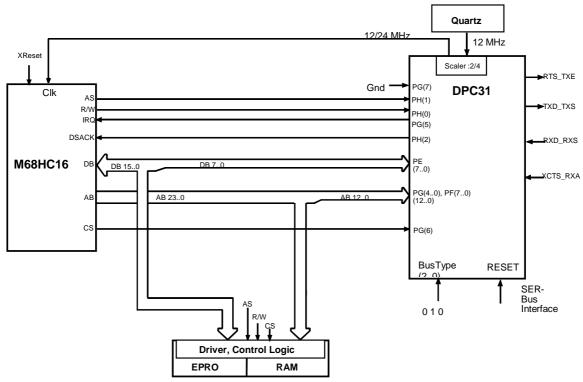


Figure 7.1-5: M68HC16 System as an Example for Asynchronous Motorola Mode

7.1.2 IO Interface

If the DPC31 is to be operated without external processor, an I/O interface is available instead of the processor interface (can be set via the bus type pins). This I/O interface consists of four ports ($PE_{7..0}$, $PF_{7..0}$, $PG_{7..0}$, $PH_{2..0}$). Each port bit can be configured as input or output by the internal application (C31). The outputs can be addressed bit by bit as well as byte by byte. Reading is always byte by byte. To configure the I/O bits, each port has a Direction Register (Dir_Reg). The output status is kept in a register bit (refer to Table 7.1-2). After reset, all ports are switched to input. The addressing of these I/O ports is provided in Chapter 7.3.2.

BusType ₂₀	PH ₂₀	PG ₇₀	PF ₇₀	PE ₇₀
	Dir_Reg_H ₂₀ (0=Out;1=In)	Dir_Reg_G ₇₀ (0=Out;1=In)	Dir_Reg_F ₇₀ (0=Out;1=In)	Dir_Reg_E ₇₀ (0=Out;1=In)
1	Addresses:	Addresses:	Addresses:	Addresses:
(I/O Interface)	Adr_H ₂₀ =ByteAddress Adr_H ₀ =BitAddress Adr_H ₁ =BitAddress	Adr_G ₇₀ =ByteAddress Adr_G ₀ =BitAddress Adr_G ₁ =BitAddress	Adr_F ₇₀ =ByteAddress Adr_F ₀ =BitAddress Adr_F ₁ =BitAddress	Adr_E ₇₀ =ByteAddress Adr_E ₀ =BitAddress Adr_E ₁ =BitAddress
	Adr_H ₂ =BitAddress	Adr_G ₂ =BitAddress Adr G ₃ =BitAddress	Adr_F ₂ =BitAddress Adr F ₃ =BitAddress	Adr_E ₂ =BitAddress Adr E ₃ =BitAddress
		Adr_G ₄ =BitAddress Adr G ₅ =BitAddress	Adr_F ₄ =BitAddress Adr F ₅ =BitAddress	Adr_E ₄ =BitAddress Adr E ₅ =BitAddress
		Adr_G ₆ =BitAddress Adr_G ₇ =BitAddress	Adr_F ₆ =BitAddress Adr_F ₇ =BitAddress	Adr_E ₆ =BitAddress Adr_E ₇ =BitAddress

Table 7.1-2: IO Interface on the Processor Interface

7.1.3 Interface Signals

Pin Name	Signal Names							Comment
	µP Interface					IO Inter	face	
	Intel sync.	Intel async.	Motorol.	Motorol. async.	_			
PE ₇₀	DB ₇₀ / AB ₇₀	DB ₇₀	DB ₇₀	DB ₇₀	I/ O	PE ₇₀	I/O	high-resistance at reset
PF ₇₀ PG ₄₀	AB ₁₅₈ GND	AB ₈₁ AB ₁₃₉	AB ₇₀ AB ₁₂₈	AB ₇₀ AB ₁₂₈	1	PF ₇₀ PG ₄₀	I/O I/O	
PG ₅	X/INT	X/INT	X/INT	X/INT	o	PG ₅	I/O	Interrupt, polarity can be parameterized
PG_6	V_{DD}	XCS	XCS	XCS	ı	PG_6	I/O	Chipselect
PG ₇	XWR	XWR	E-Clock	GND	1	PG ₇	I/O	Intel: Write / Motorola: E-Clock
PH₀	XRD	XRD	R_W	R_W	I	PH₀	I/O	Intel: Read / Motorola: Read/Write
PH₁	ALE	V_{DD}	V_{DD}	AS	1	PH₁	I/O	Address Latch Enable
PH_2	-	XRDY	-	XDSACK	0	PH ₂	I/O	Ready Signal
BUSTYP ₂₀	"001"	"000"	"011"	"010"	1	"1 "	1	Setting of the interface
RESET	RESET	RESET	RESET	RESET	I	RESET	I	Reset input

Table 7.1-3: Interface Signals for μP and IO Interface

The data bus outputs are high-resistance during the reset phase. In the test mode, all outputs are switched to high resistance.

7.1.4 Interrupt Controller of the μ P Interface in the DPC31

Via the interrupt controller, the processor is informed of various events. These consist primarily of indication messages and different error events. The controller has no priorization level and does not provide an interrupt vector (not compatible with 8259A).

It consists of the following: an interrupt request register (IRR), interrupt mask register (IMR), interrupt register (IR) and an interrupt acknowledge register (IAR). The structure is shown in Figure 7.1-6.

In the IRR, every event is stored. Via the IMR, individual events can be suppressed. If, for example, the DPS indications are evaluated only by the internal C31, the corresponding masks have to be set here and enabled for the C31 in the interrupt controller. The entry in the IRR is independent of the interrupt mask. Events that are not masked out in the IMR generate the X/INT Interrupt (Pin PG₅) via a cumulative network.

For debugging, the user can set every event in the IRR (only those bits are activated that are to be set).

Each interrupt event that was processed by the processor has to be cleared via the IAR (except for New_Prm_Data, New_DDB_Prm_Data, New_Cfg_Data). A log '1' is to be written to the corresponding bit position. If a new event and an acknowledgement of the previous event are pending at the same time at the IRR, the event remains stored. If the processor subsequently enables a mask, it has to be ensured that there is no past entry in the IRR. To make sure, the position must be cleared in the IRR prior to the mask enable. Prior to exiting the interrupt routine, the processor has to set the "End of Interrupt Signal (EOI) = 1" in the EOI register (see below). With this edge change, the interrupt line is switched inactive. If an event should still be stored, the interrupt output becomes active again only after an interrupt inactive time of at least $1\mu s$ or 1ms, or at most $2\mu s$ or 2ms (refer to Chapter 9.6.2.2). Via 'EOI_Timebase' (Param Register, refer to Chapter 3.3), this interrupt inactive time can be set (EOI_Timebase=0 -> $1\mu s$; EOI_Timebase=1 -> 1ms). This makes it possible to reenter the interrupt routine when using an edge-triggered interrupt input.

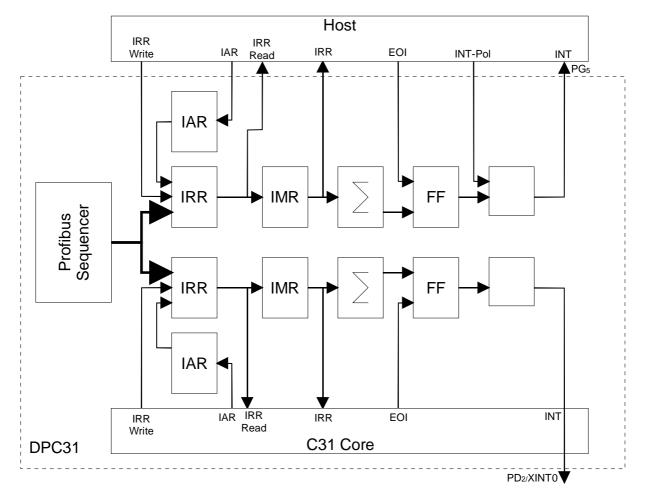


Figure 7.1-6: Interrupt Controller of the μP Interface and C31 Core in the DPC31

The polarity of the interrupt input can be parameterized (Mode Register1; refer to Chapter 3.3: INT_Pol). After the HW reset, the output is low-active.

Interrupt Request Register, IRR (writable, readable):

New_GC_ Command	Go/Leave_ Data_ Exchange	IndQ_Full	IndQ_Entry	0	0	Diag_ Fetched	WD_State_ Changed
7							0
DX_OUT_ Overflow	DX_OUT	Diag_ Buffer_ Changed	Get_Cfg_ Buffer_ Changed	New_Cfg_ Data	0	New_Prm_ Data	New_SSA _Data
15							8
0	0	0	0	0	0	0	0
23							16
0	0	0	0	0	SSC_ Interface	RAM_ Access_ Violation	0
	_		28			_	24

WD_State_Changed: The state of the WD_SM has changed (change between

'Baud_Search, 'Baud_Control' or 'DP_Control'.

Diag_Fetched: The master fetched the diagnostic buffer IndQ_Entry: An entry was made in the indication queue

IndQ_Full: The Indication_Queue is full. The pending indication could not be

transferred

Go/Leave_Data_Exchange: DPS has entered the 'Data_Exchange' mode or has exited it

New_GC_Command: DPS has received a Global_Control message with a modified

'GC_Command byte' (New_GC_Int_Mode=0) and has stored this byte in the RAM cell 'GC_Command'. If 'New_GC_Int_Mode=1', this interrupt is set for every received Global_Control message.

New_SSA_Data: DPS has received a 'Set_Slave_Address message' and has made

the data available in the User_SSA buffer.

New_Prm_Data: DPS has received a 'Set_Param message' and has made the data

available in the User Prm buffer.

New_Cfg_Data: DPS has received a 'Check_Cfg message' and has made the data

available in the User Cfg buffer.

Get_Cfg_Buffer_Changed: Upon request by 'User_New_Get_Cfg_Buf', DPS has exchanged

the Get_Config buffers and has made the old buffer available again

to the user.

Diag_Buffer_Changed: Upon request by "User_New_Diag_Buf', DPS has exchanged the

diagnostic buffers and has made the old buffer available again to

the user.

DX OUT: DPS has received a 'Write Read Data/GC message' and made

the new output data available in the N buffer. In the case of 'Power_On', 'Clear', or 'Leave_Master', the DPS_SM makes a cleared C buffer available and generates this interrupt also. By parameterizing 'Enable DX_Out_Port=1' in the C31_Control register, the interrupt 'DX_OUT' can be applied directly to Port PB3. DPS_has_received_a 'Write_Read_Data/GC_message' and has

DX_OUT_Overflow: DPS has received a 'Write_Read_Data/GC message' and has

made the new output data available in the N buffer. However, the old data wasn't fetched and is no longer available. In the sync mode, the frozen output data in the D buffer was overwritten

because there was no GC message.

RAM_Access_Violation: The memory was accessed outside the communication memory.

SSC Interface: The SSC interface generated an interrupt.

After reset, the Interrupt is cleared.

Interrupt Register, IR (readable only):

For bit assignment, refer to Interrupt Request Register.

Interrupt Mask Register, IMR (writable, can be changed during operation):

For bit assignment, refer to Interrupt Request Register.

Bit = 1: Mask is set and the interrupt is disabled

Bit = 0: Mask is cleared and the interrupt is enabled.

After reset, all bits are set.

Interrupt Acknowledge Register, IAR (writable, can be changed during operation):

For bit assignment, refer to Interrupt Request Register.

Bit = 1: The IRR bit is cleared.

Bit = 0: The IRR bit remains unchanged.

After reset, all bits are cleared.

Interrupt EOI Register, EOI (writable, can be changed during operation)

EOI is triggered with the write operation to the register cell 'Interrupt EOI Register'. The write data is don't care.

7.2 Synchronous Serial Interface (SSC Interface)

In the DPC31, a universal synchronous serial interface is integrated. In addition, several SPI slave blocks (ser. E²PROMs or AD transformers) can be connected to this interface (Figure 7.2-1). This SSC interface has full duplex capability, and only supports the master mode.

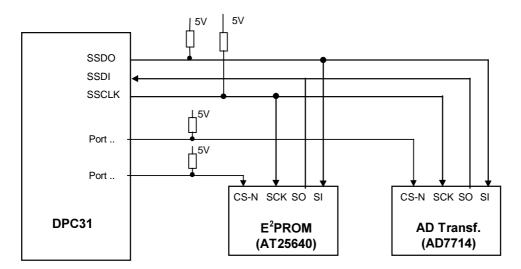


Figure 7.2-1: SPI Interface at the DPC31

To connect **SPI devices** (ser. E²PROM, AD transformer), an output port is needed per SPI device, in addition to the SSC channel, in order to generate the chip select signal.

Description of the SSC Module:

The SSC module consists of a transmit channel and a receive channel. Each channel contains a 9-bit shift register, and an 8-bit buffer. Character widths of 1 to 8-bit are supported.

The user operates the transmit buffer. If the transmit buffer is empty, the transmitter generates the Transmit Buffer Empty which can be polled via the status register, or which, with a corresponding enable in the Interrupt Enable Register, activates the SSC interrupt. After loading the transmit buffer, Transmit Buffer Empty enters inactive. As soon as the transmit shift register is free, the data byte is transferred there and shifted out. The clock (SSCLK) is generated only as long as the shift process is running. During continuous sending, the user always writes the next data byte to the transmit buffer while one is being shifted out.

In the receiver, the arriving bits are shifted to the Receiver Shift Register. After 8 data bits have been received, or 9 bits with enabled parity, this data byte is accepted in the receive buffer and Receive Buffer Full is generated. This state can be polled via the status register or it can be activated as SSC _Interface interrupt if there is a corresponding enable in the Interrupt Enable Register.

If there is continuous receiving, the user reads a data byte from the receive buffer while the next one is arriving at the receiver shift register. Error states (Receive Buffer Overflow, RECERR; or Parity Error, PERR) can be polled in the status register or can be generated as SSC_Interface interrupt (enable in the Interrupt Enable Register).

Because of the full duplex channel in the SSC module, it can receive while it is sending. However, the protocols process only half-duplex (SPI E²PROM, etc.). For that reason, the received data is to be ignored (disable the corresponding interrupts). The last received data byte is always in the receive buffer. To receive user data, dummy data bytes have to be sent so that the SSC module generates a clock pulse.

Register Assignment of the SSC Module:

The user (external μP or C31) addresses the SSC module in the address range from 0020h to 0025h. It can be polled or operated with interrupt output. The interrupt runs to the two interrupt controllers (refer to Chapter 7.1.4).

Control1 Register:

Bit Position	7	6	5	4	3	2	1	0
	BREN	-	PODD	PPOS	PEN	HCB	CPOL	CPHA
Default	0	0	0	0	0	0	1	1
	rw	r	rw	rw	rw	rw	rw	rw

CPHA: Clock Phase Control Bit

=0 Acceptance of the receive data at the leading clock edge; sending at the back

clock edge.

=1 Shifting the send data at the leading clock edge; receiving at the back clock edge.

CPOL: Clock Polarity Control Bit

=0 Clock idle state is 'low'; leading clock edge is a low-to-high edge.

=1 Clock idle state is 'high'; leading clock edge is high-to-low edge.

HCB: Heading Control Bit

=0 Send/receive LSB first.=1 Send/receive MSB first.

PEN: Parity Control Bit

=0 Generating/checking parity disabled.=1 Generating/checking parity enabled.

PPOS: Parity Position Control Bit

=0 Send/receive parity bit last.=1 Send/receive parity bit first.

PODD: Parity Selection Bit

=0 Even parity bit (parity bit generates in the data byte an even number of

'1's).

=1 Uneven parity bit (parity bit generates in the data byte an uneven number of

'1's).

BREN: Baudrate Enable Bit

=0 Baudrate generator is disabled (power save).

=1 Baudrate generator is enabled.

Control2 Register:

Bit Position	7	6	5	4	3	2	1	0
	-	-	-	-	-	DW_2	DW ₁	DW_0
Default	0	0	0	0	0	0	0	0
	r	r	r	r	r	r/w	r/w	r/w

Bit	- Function							
DW ₂₀	Data Width Selection							
	000: Transfer data with 8 bit length							
	001: Transfer data with 1 bit length							
	010: Transfer data with 2 bit length							
	011: Transfer data with 3 bit length							
	100: Transfer data with 4 bit length							
	101: Transfer data with 5 bit length							
	110: Transfer data with 6 bit length							
	111: Transfer data with 7 bit length							

Status Register:

Bit Position	7	6	5	4	3	2	1	0
	BUSY	-	-	-	REC-	PERR	RBFU	TBEM
					ERR			
Default	0	0	0	0	0	0	0	1
	r	r	r	r	r/w	r/w	r	r

TBEM: Transmit Buffer Empty Flag

=0 Transmit buffer is full.

=1 Transmit buffer is empty.

RBFU: Receive Buffer Full Flag

=0 Receive buffer is empty.

=1 Receive buffer is full.

PERR: Parity Error Flag

=0 No parity error in data byte.

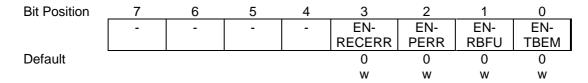
=1 Parity error in data byte; has to be reset by the user.

RECERR: Receive Error Flag

=0 No receive buffer overflow.

=1 Receive buffer overflow; has to be reset by the user.

BUSY: Busy Flag


=0 No action; SSC module can be reparameterized.

=1 Action on the bus; reparameterization not permitted.

These bits are ORed to the interrupt 'SSC_Interface'. They must have been enabled in the Interrupt Enable Register.

Interrupt Enable Register:

ENTBEM: EnableTransmit Buffer Empty Interrupt

=0 Transmit Buffer Empty Interrupt is disabled.
 =1 Transmit Buffer Empty Interrupt is enabled.

ENRBFU: Enable Receive Buffer Full Interrupt

=0 Receive Buffer Full Interrupt is disabled.=1 Receive Buffer Full Interrupt is enabled.

ENPERR: Enable Parity Error Interrupt

=0 Parity Error Interrupt is disabled.=1 Parity Error Interrupt is enabled.

ENRECERR: Enable Receive Error Interrupt

=0 Receive Error Interrupt is disabled.=1 Receive Error Interrupt is enabled.

Baudrate Register:

An 8-bit division factor (G) is loaded in the baud register. This value specifies the baudrate according to the following formula: (f_{sys} = internal system clock). At 48 MHz, synchronous transmission of 12 MBaud maximum is possible.

 $BR = f_{sys} / 4(G+1)$

7.3 80C31 Core and Interface

The internal C31 core is SW-compatible with Industrial Standard 8031 (including command execution times). In addition, it has Timer2 from the 80C32 and the internal work memory consisting of 256 bytes. *Below, this internal processor is called "C31"*. All functions of the controller can be used by the user except port PD2, where the interrupt of the sequential control system is located.

The C31 runs with half of the input frequency (for asynchronous with 24MHz, for synchronous with 2, 4, or 8 MHz).

In order to get the original performance of the C31, Ports A, B, and D must be wired with <u>external</u> pull-up resistors. Address Port C is always on Output and thus does not have to be wired with pull-up resistors. The same applies to Port D2 (XINT0), Port D6 (XWR) and Port D7 (XRD).

Notes:

The ports E, F, G and H are configured as input or output channels by the user program if the interface is set to I/O (BUSTYPE_{2..0} = "1 - -").

7.3.1 Reset Phase of the C31

The reset phase of the C31 needs a minimum time span of 30 elementary periods. The build-up time of the PLL is at 200 µs after the supply voltage and the external quartz have stabilized.

7.3.1.1.1.1 Boot Type Setting

In order to start the DPC31, the boot type has to be set. Presently, only Boot Type 2 is permissible.

BOOT	TYPE	
Bit 1	Bit 0	
0	0	Type 1a
0	1	Type 1a Type 1b
1	0	Type 2 <i>Type 3</i>
1	1	Type 3

Table 7.3-1: Boot Type Settings

7.3.1.2 Boot Type 2

Two variants are possible for Boot Type 2:

- 1. The internal C31 core processes the program that is stored in the externally connected EPROM (Port A .. D). Ports E .. H are free and can be used for I/O.
- 2. The μ P/I/O interface (ports E .. H) can be used for connection to an external μ P system (with EPROM) or as I/O channels. Via the SPI interface, an A/D transformer and/or an EPROM can be connected in addition.

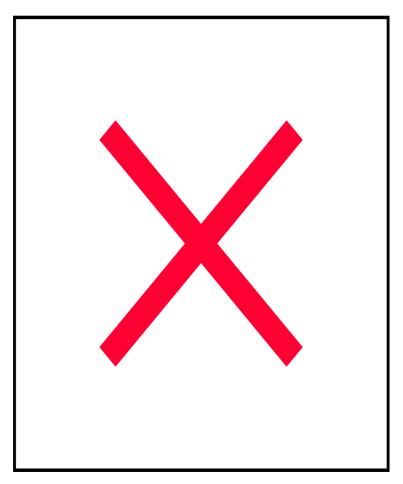


Figure 7.3-1: Operation in Boot Type 2

7.3.2 80C31 Core and Internal Memory

The processor has an "internal" work memory consisting of 256 bytes.

The data area of the processor is broken down into different blocks (Figure 7.3-2):

The register cells (interrupt controller, DPS control units, etc.) are located from Address 000h to 004Fh. From Address 0050h to 008Fh, the I/O ports E, F, G, and H can be addressed. From 0090h to 07FFh is an unused area. The internal RAM follows starting with address 0800h broken down into the block: work cells, parameter cells, and buffer management, which consists of approx. 0.5 kByte, and the communication area, which consists of 5.5 kByte.

Starting with 2000h, the external RAM is accessed (signal pin: XCSDATA = low).

External RAM (Data Memory)	FFFFh
(- 3.3	2000h
int. CRAM (5.5 kByte)	1FFFh
S/R_UnitTemp Buffer Internal Stack (for sequential control system) Buffer Management	approx. 09FFh
Parameter Cells Internal Variables Area that can't be used	Start internal RAM
	0090h
Port H Direction Register Port H (1 = Input, 0 = Output) ByteAddress H ₂₀ BitAddress H ₂ BitAddress H ₁ BitAddress H ₀	0089h 0088h 0082h 0080h
Port G Direction Register Port G (1 = Input, 0 = Output) ByteAddress G ₇₀ BitAddress G ₇	0079h 0078h 0077h
 BitAddress G ₀	 0070h
Port F Direction Register Port F (1 = Input, 0 = Output) ByteAddress F ₇₀ BitAddress F ₇	0069h 0068h 0067h
 BitAddress F ₀	 0060h
Port E Direction Register Port E (1 = Input, 0 = Output) ByteAddress E_{70} BitAddress E_{6} BitAddress E_{5} BitAddress E_{4} BitAddress E_{3} BitAddress E_{2} BitAddress E_{2} BitAddress E_{1} BitAddress E_{1}	0059h 0058h 0057h 0056h 0055h 0054h 0053h 0052h 0051h 0050h
DPS Control Units SSC Interface	004Fh
Parameter Register / Delay Timer Interrupt Controller	0000h

Figure 7.3-2: X Data Area of the Internal Processor

7.3.3 Expansion Interface to the 80C31 Core

Via the ports A, B, C, and D, the ALE and XPSEN signal, all signals of the C31 are taken outside. The C31 must always be operated with address and data bus because the internal memory of the DPC31 is connected to it. The exact assignment is provided in Table 7.3-2 (function/alternative function). PD2 is not to be used; here, the interrupt of the sequential control system is located that is always taken permanently to the outside. In addition, the following signals are generated: "XCSDATA" (chip select external data memory (RAM)) and "XCSCODE" (chip select external program memory (ROM)). XCSDATA = low if the access is made to the external data area (starting with address 2000h). XSCODE = low, if the external code area is accessed (for Boot Type 2, continuous). These signals are always to be connected so that there will not be driver conflicts when connecting an In Circuit Emulator (ICE).

This makes connecting a standard In Circuit Emulator for an 8052 controller (24 MHz) possible. For this, the pin has to be wired DBX = high.

7.3.4 Interface Signals

Pin Name		Function		Alternative		DebugMode (ICE) DBX = '1'		Comment
	Type	Signal Name	Type	Signal Name	Type	Signal Name	Type	
PA ₇₀	I/O	AB ₇₀ / DB ₇₀	I/O	-		AB ₇₀ / DB ₇₀	I/O	Multiplexed address/data bus
PB_0	I/O	P1.0	I/O	T2	I	-	1	
PB ₁	I/O	P1.1	I/O	T2EX	I	-	I	
PB ₂₇	I/O	P1.2 P1.7	I/O	-		-	I	
PC ₇₀	I/O	AB ₁₅₈	0	-		AB ₁₅₈	I	Address bus more significant byte
PD_0	I/O	P3.0	I/O	RXD	I	-	I	
PD ₁	I/O	P3.1	I/O	TXD	0	-	I	
PD ₂	I/O	XINT0	0	-		XINT0	0	Interrupt of the seq. ctrl. syst.
PD_3	I/O	P3.3	I/O	XINT1	I	-	I	Ext. interrupt
PD ₄	I/O	P3.4	I/O	T0	I		1	
PD ₅	I/O	P3.5	I/O	T1	I		I	
PD ₆	I/O	XWR	0	-		XWR	I	
PD ₇	I/O	XRD	0	-		XRD	I	
ALE	I/O	ALE	0	-		ALE	I	Address Latch Enable
XPSEN	I/O	XPSEN	0	-		XPSEN	I	Output Enable for Code- Memory
XCSDATA	0	XCSDATA	0	-		XCSDATA	0	Chip Select for Data Memory
XCSCODE	0	XCSCODE	0	-		XCSCODE	0	Chip Select for Code Memory
DBX	I	DBX	I	-		DBX	I	In Circuit Emulator debug mode

Table 7.3-2: Interface Signals of the C31

7.4 C31 Interrupt Controller in the DPC31

Via this interrupt controller, the C31 can be provided with the same interrupt events as the external μP (refer to Chapter 7.1.4).

It is structured exactly as the other interrupt controller. Each event is stored in the IRR. Via the IMR, individual events can be suppressed. If, for instance, the DPS indications are to be evaluated by the external processor, the corresponding masks have to be set here and be enabled in the interrupt controller for the external processor. The entry in the IRR is independent of the interrupt mask. The event signals that are not masked out in the IMR generate the **C31 interrupt** via a summation network.

For debugging, the user can set any event in the IRR (activate only the bits that are to be reset).

Before leaving the interrupt routine, the C31 has to set the "End of Interrupt signal (EOI) = 1" in the EOI register. With this edge change, the interrupt line is switched inactive. If an event should still be stored, the interrupt output becomes active again only after an interrupt inactive time of at least $1\mu s$ or at the most $2\mu s$ (refer to Chapter 9.6.2.3).

The interrupt registers IRR, IR, IMR, IAR, and the EOI register are described in Chapter 7.1.4.

These interrupt registers -assigned only to the C31- can be accessed by the C31 under the same addresses as the interrupt registers assigned to the host interface. Only the interrupt outputs (ports PG5 and PD2) are different.

7.5 Serial PROFIBUS Interface

7.5.1 Asynchronous Physics Unit (NRZ)

7.5.1.1 Transmitter

The transmitter converts the parallel data structure into a serial data stream. The asynchronous UART process processes with a start bit and a stop bit that frame 9 information bits (8 data bits; 1 even parity bit). The start bit is always log '0', and the stop bit as well as the idle state are always log '1'. The least significant bit is transmitted first.

The transmitter switches the request to send (RTS) active first. After a minimum waiting time of 4 elementary periods (at XCTS active), it then starts the transmission process. (To connect a modem, the XCTS input is available. After RTS is active, the transmitter must hold back the first message character until the modem activates XCTS. During message transmission, the transmitter no longer queries the XCTS.) When closing transmission, the transmitter deactivates the RTS.

7.5.1.2 Receiver

The receiver converts the serial data stream into the parallel data structure. It scans the serial data stream with the 4-fold transmission speed. One requirement of the PROFIBUS protocol is that no idle states are permitted between the message characters. The DPC31 transmitter ensures that this specification is adhered to. In order to check outside systems (for example, S/W solutions) with respect to this point, supplementary logic is implemented in the DPC31 receiver. The receiver checks whether start bit synchronization takes place (not at the ED character of a message) after the stop bit. By parameterizing "DIS_START_CONTROL=1" (in the param register, or 'Set_Param message' for DP), this subsequent start bit check is switched off.

Due to the 4-fold scan, a maximum distortion of the serial input signal of X = -47% to y = +22% in reference to the falling startbit edge is permissible.

7.5.1.3 Interface Signals

Pin Name	Signal Name	Input=I	Comment
		Output=O	
TXD_TXS	TxD	0	Send Data
RXD_RXS	RxD	1	Receive Data
RTS_TXE	RTS	0	Enable of the send drivers
XCTS_RXA	XCTS	1	Sender Enable

Figure 7.5-1: Asynchronous PROFIBUS Interface of the DPC31

In the test mode, all outputs are switched to high resistance.

7.5.2 Synchronous Physics Unit (Manchester)

The synchronous interface makes data transmission according to IEC 1158-2 possible. It includes services of the interface -defined in this standard- between the following: data link layer and physical layer ((FDL Ph layer interface), the sublayers Ph DIS (DCE independent sublayer) and Ph MDS (medium dependent sublayer) for wire media and the corresponding MDS-MAU interface. In addition, the station management physical layer interface is implemented (parts of the service primitives, optionally defined in Standard IEC 1158-2). The so-called "medium access unit (MAU)" is not implemented, which includes the following: the initial pulse shaper, the line driver, the receive amplifier, the receive filters and the line coupling (if needed, with remote supply setup). The MAU can be set up with little effort with the SIM1 Analog ASIC.

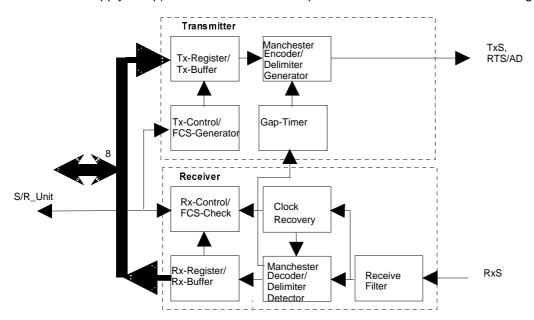


Figure 7.5-2: Block Diagram of the Synchronous Interface.

7.5.2.1 Transmitter

The transmitter converts the parallel data structure into a serial data stream. The synchronous transmission procedure according to IEC 1158-2 processes with Manchester coding and start and end delimiters. Each message is preceded by a preamble. The length of the preamble is stored in the preamble register (refer to 3.3). In contrast to the asynchronous interface, the most significant data bit is transmitted first¹. The transmitter generates a 16-bit CRC field and attaches it to the data field.

_

¹ according to IEC 1158-2, Chapter 7.

PREAMBLE	SD	FC+DA+SA+Data	FCS (CRC)	ED
18 Byte	1 Byte	1249 Byte	2 Byte	1 Byte

Figure 7.5-3: Frame Structure of the Serial Interface

Figure 7.5-4 shows the coding rules . Figure 7.5-5 shows the structure of the preamble and of the delimiters. These figures show that the elementary characters (= smallest quantization unit) at the transmitter output have the length of half a bit period. Their generation requires the double bit clock.

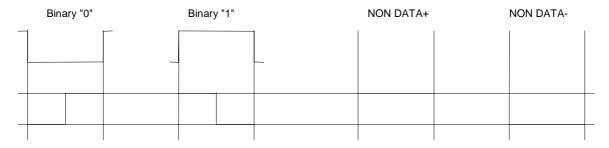


Figure 7.5-4: Bit Coding of the Synchronous Interface

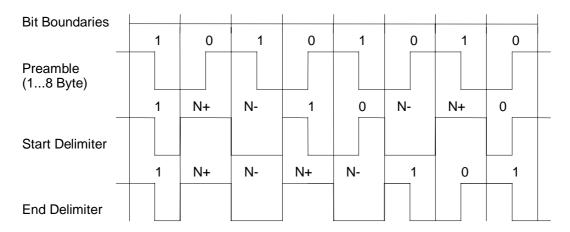


Figure 7.5-5: Preamble and Delimiters

The transmitter makes different output signals available (Figure 7.5-5). In addition to the signals RTS (enable of the send driver) and TxS (send signal), the signal ADD can be utilized. With the combination of TxS and ADD, an adder circuit for activating a current control unit can easily be established as it is used for the interface of an intrinsically safe bus station. The combination RxS/TxS is an advantage when activating a transformer.

It is useful to make the signals RTS and ADD available at a joint output (RTS/ADD). Switching between the two modes can be parameterized (Param Register; refer to 3.3).

In order to ensure the minimum gap between two messages, the transmitter is disabled at the end of a message for the duration of a minimum interframe gap time. The gap timer is loaded with the current value for the interframe gap time from the interframe GAP_Time register (Chapter 3.3).

Figure 7.5-6: Output Signals of the Synchronous Transmitter

7.5.2.2 Receiver

7.5.2.2.1.1.1 Receive Filter

The receive filter conditions the receive signal RxS for clock recovery and for decoding.

7.5.2.2.1.1.2 Manchester Decoder and Clock Recovery

This unit includes all the resources that are needed to decode the data from the filtered receive signal.

The **Clock Recovery** recovers the clock CLK1 from the filtered receive signal and the system clock CLK16 (whose nominal frequency corresponds to the 16-fold data rate).

Because of the ambiguity of the zero crossings² and because of the normally relatively long "catch time" of a phase control loop, it is necessary to provide the clock recovery with a quick synchronization setup (quick synchronizer) which, at the beginning of each receive process, quickly synchronizes the recovered clock with the receive signal.

The signal RxA, generated by the line activity detector, switches the synchronizer into a "quick synchronization mode" at the beginning of a message. In this mode, **the fourth zero crossing** (or the first four zero crossings)³ of the signal supplied by the preamble filter leads to resynchronization(Zero_Phase=transition to the initial state) respectively. After the quick synchronization phase, the receive clock is corrected only with \pm 1/16 clock period regarding phase deviation from the signal FRxS⁴. This state is retained until the next falling edge of the signal RxA.

The DPC31 has an improved quick synchronizer. To activate it, the user must set the bit 'Quick_Sync_New=1' in the param register (refer to Chapter 3.3). In this mode, the DPC31 attempts to more accurately determine the bit center during the preamble phase by recording the duration of the last high and low phase before the 4th edge. From the average of these two numbers, it calculates a correction value which is taken into account when the bit center is specified.

The **data decoder** scans the filtered receive signal with the recovered receive clock (positive edge), and passes on the scan value, weighted with the polarity information (POL=1, or POL=0) that was transferred by the decoder state machine as receive signal RxD.

-

² Only the zero crossings in bit center can be utilized for clock recovery.

³ According to IEC 1158-2 (Chapter 9.6), at least four bits are available to the preamble for synchronization. Multiple synchronization during this phase does not provide advantages. A decrease in the error frequency would be attainable through notification via several bits (three maximum)

⁴ Through this rigid phase control loop, the required detection according to IEC 1158-2 (Chapter 9.7) of half-bit slip errors is ensured .

7.5.2.3 Power-Saving Serial Interface

Figure 7.5-7 shows three different interfaces of the SIM1 at the DPC31.

If no galvanic isolation of the bus interface (SIM1) is required by the application-specific electronics, the send signals (TxS, TxE) and receive signals (RxS, RxA) are passed on without processing in the DPC31 to the synchronous bus physics unit (Figure 7.5-8a) with the parameter assignment GIM_EN='0' (Galvanic Isolation Mode, refer to Param Register, Chapter 3.3) in the interface of the power-saving serial interface. The output levels RxA and RxS are adjusted via the supply input V_{IF} (SIM1).

To galvanically isolate the lines for the data- and auxiliary signals, different isolated components and circuits can be used (Figure 7.5-7b and c). The conventional type provides for an optocoupler each for the signals TxS, TxE, RxS (and RxA). Otherwise, processing the send and receive signals in the interface of the power-saving serial interface is as shown in Figure 7.5-7a.

To implement a power-saving method of working with optocouplers, an interface logic was conceived (Figure 7.5-7c) which is to be activated via the parameter assignment GIM EN='1'.

This circuit generates short pulse-width modulated transmission pulses only in the case of edge transitions of the data stream from which the data signal is recovered in the secondary circuit.

The mean power input can thus be reduced to low values. The following are pointed out as special features:

- Combination of the control and data signals in a transmission channel (TxSD, RxSD); thus, reducing the interface width for send and receive direction from 4 to 2 optocoupler channels.
- Suitable for 5V and 3V engineering
- Use of conventional optocoupler blocks with simple selection at the manufacturer; can also be used for
 optocouplers with higher power requirements and approval for intrinsically safe circuits.
- The power-saving interface can be used only for a transmission rate of 31.25kBd (refer to Param Register, Chapter 3.3).

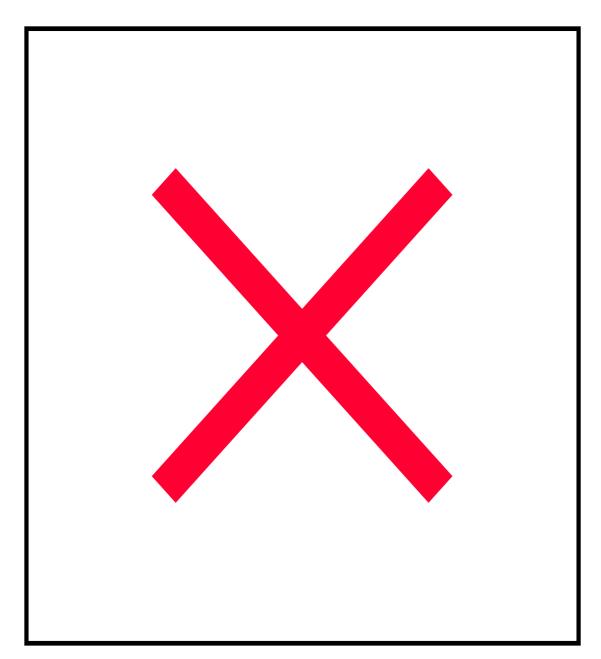


Figure 7.5-7: Interface to the Communication Controller DPC31

The interface logic of the power-saving serial interface includes a pulse modulator and a pulse demodulator as in the SIM1 (Figure 7.5-7c). The comparator for regeneration of the analog receive signal behind the optocoupler is not integrated into the DPC31 but must be set up externally.

Pulse Duration Modulator:

In the galvanic isolation mode (GIM_EN='1'), the PDM (Figure 7.5-8) converts the serial signal that is to be transmitted into a duration-modulated pulse sequence; the rising edge of the send

signal (TxS1) is assigned a long pulse and the falling edge is assigned a short pulse. Likewise with the edges of the static auxiliary signal (TxE1 or RTS/ADD), a long and short pulse is generated which are added to the pulse sequence of the data signal. The summation signal thus generated (TxS_IM) is used for sampling the LED of an optocoupler.

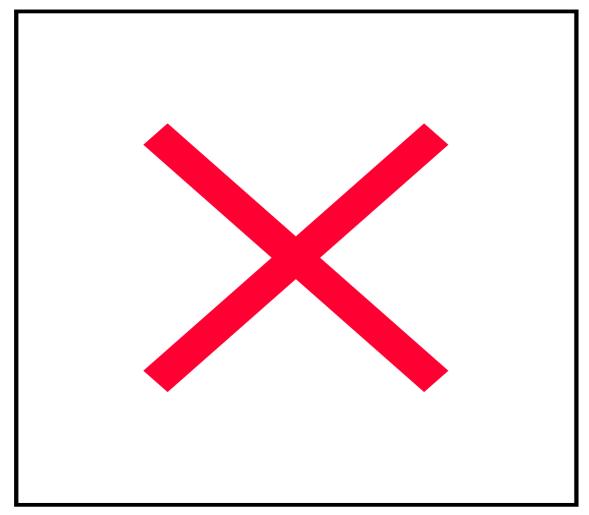


Figure 7.5-8: Signal Shaping in the Modulator

Pulse Duration Demodulator:

In the galvanic isolation mode (GIM_EN='1'), the useful signal for the PDM is recovered from the collector signal of the optocoupler transistors by using a comparator.

The following digital circuit component (integrated into the DPC31) evaluates the length of the output pulses of the comparator and recovers from it the data signal and the auxiliary signal. The circuit diagram of the demodulator is shown in Figure 7.5-9. The signal characteristic with respect to time is shown in Figure 7.5-10.

When using RxS IM, the pin RxA is to be applied to GND.

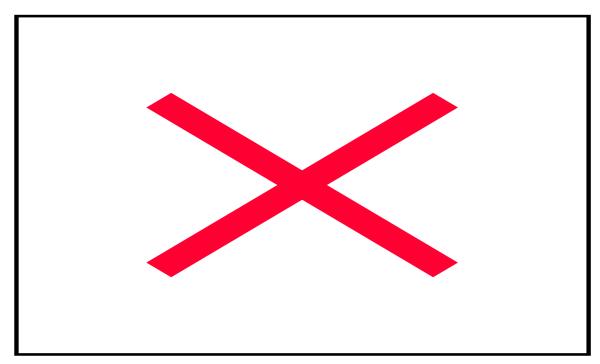


Figure 7.5-9: Circuit of the Demodulator in principle

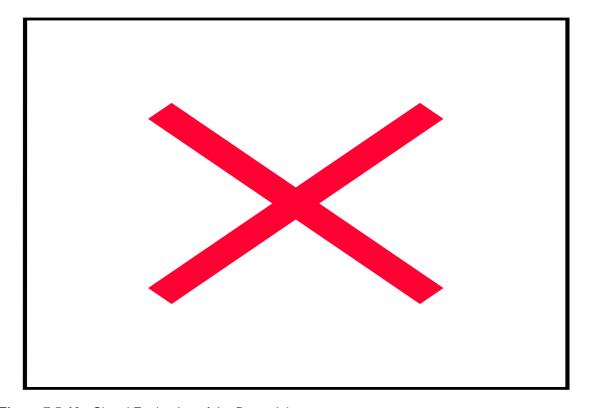


Figure 7.5-10: Signal Evaluation of the Demodulator

The leading edge of each arriving pulse (2) triggers a timer with the run time t3. The following condition with regard to time applies: $\mathbf{t1} < \mathbf{t3} < \mathbf{t2}$. When t3 expires, the pulse length on t1 and t2 is polled. Depending on the pulse duration t1 or t2 that was detected respectively, the flipflop FF1 is set to L or H. The output of the flipflop thus corresponds to the serial data signal RxS1 (4). The output signal (5) of an additional flipflop FF2 is combined with the signal (4) via an or function. When 2 short pulses arrive consecutively, both flipflops are reset. The or-function results in an L, which is recognized as the end of the static signal RxE1 (6). With the signal (7), an additional retriggerable timer t4 (40 μ s \leq t4 \leq 100 μ s) resets the two evaluation flipflops during transmission pauses in order to suppress undefined setting through interference signals.

Pulses of < 0.5 μ s that are pending at the comparator output are reliably suppressed; pulses \geq 1 μ s are reliably detected.

Alternative Suggestion regarding Comparator Circuitry:

The wiring of the comparator output described under Figure 7.5-9 has the disadvantage that the comparator has to be supplied with the external voltage 5V via the input $V_{\rm IF}$, and a level adaptation is necessary at the output. In addition, a control area up to the positive supply voltage has to be ensured. The circuit variant below (Figure 7.5-11) avoids these disadvantages. The two voltage dividers R2 / R3 and R4 / R5 move the work area of the comparator to the center of the internal supply voltage $V_{\rm CC}$; an offset results from the difference of the values R2 and R4 in the idle state; R6 causes a decrease in amplitude; C2 a delay of the reference voltage in the active circuit state. The capacitor C1 decouples the external voltage 5V and the internal $V_{\rm CC}$. This comparator circuit is not integrated into the DPC31 and must be implemented externally.

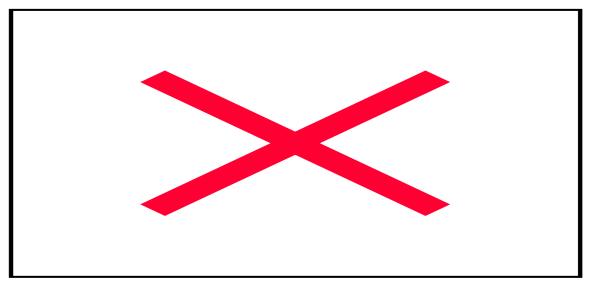


Figure 7.5-11: Wiring of the Comparator with Bridge Network

7.5.2.4 Interface Signals

Pin Name	Signal Name	Input=I	Comment
		Output=O	
TXD_TXS	TxS (TxS_IM)	0	Send signal (for asyn. physics TxD)
RXD_RXS	RxS (RxS_IM)	I	Receive signal (for asyn. physics RxD)
RTS_TXE	TxE	0	Enable of the send drivers/addition signal (for asyn. physics
			RTS)
XCTS_RXA	RxA		Auxiliary signal for receive
			(has not been needed so far in the syn. physics unit (apply to GND); for
			asyn. physics XCTS)

7.5.2.4.1.1.1 Figure 7.5-12: Synchronous PROFIBUS Interface of the DPC31

In the test mode, all outputs are switched to high resistance.

7.6 DPS Watchdog Timer

7.7 Watchdog Timer

7.7.1 Automatic Baudrate Detection

The DPC31 is able to recognize the baudrate automatically. The "Baud_Search" mode is entered after each RESET as well as after the expiration of the Watchdog(WD) timer in the 'Baud_Control' mode.

The DPC31 starts the search for the set baudrate always with the highest baudrate. If during the monitoring time no SD1, SD2, or SD3 message has been received completely and faultlessly, the search is continued with the next lower baudrate.

After detecting the correct baudrate, the DPC31 switches to the "Baud_Control" mode and monitors the baudrate. The monitoring time can be parameterized (WD_Baud_Control_Val). The watchdog processes in this case with a clock of 100 Hz (10 msec). Each faultlessly received message to its own station address resets the watchdog. If the timer expires, the DPC31 reswitches to the Baud Search mode.

7.7.2 Baudrate Monitoring

In 'Baud_Control', the baudrate that was found is monitored **continuously**. With each faultless address to the DPC31s own station address, the watchdog is reset. The monitoring time is the result of multiplying 'WD_Baud_Control_Val' (to be parameterized by the user) by the time base (10 ms). If the monitoring time expires, the WD_SM reenters 'Baud_Search'. If the user handles the DP protocol with the DPC31 (DP_Mode =1; refer to Mode Register 0), the watchdog is used for the 'DP_Control' mode after a 'Set_Param message' with enabled response monitoring 'WD_On = 1' was received. If the master monitoring 'WD_On = 0' is switched off, the watchdog timer remains in the baudrate monitoring mode. The PROFIBUS DP state machine is not reset if the timer expires; that is, the slave remains in the DATA_EXchange mode.

7.7.3 Response Monitoring

The 'DP_Control' mode is used for response monitoring of the DP master (Master_Add). The set monitoring time is the result of multiplying both watchdog factors and then multiplying by the time base valid at the moment (1 ms or 10 ms):

T_{WD} = (1 ms or 10 ms) * WD_Fact_1 * WD_Fact_2 (refer to Byte 7 of the parameter assignment message).

The two watchdog factors (WD_Fact_1, WD_Fact_2) and the time base that represent a value for the monitoring time can be loaded by the user with the 'Set_Param message' with any value between 1 and 255. **Exception:** the setting WD_Fact_1=WD_Fact_2=1 is not permissible. This setting is not checked by the circuit.

With the permissible watchdog factors, monitoring timing between 2 ms and 650s can thus be implemented regardless of the baudrate.

If the monitoring time expires, the DPC31 reenters 'Baud_Control' and the DPC31 generates the 'WD_DP_Control_Timeout interrupt'. In addition, the state machine is reset; that is, the reset modes of buffer management are generated.

If another master takes over the DPC31, it either switches to 'Baud_Control' (WD_On = 0) or it remains in 'DP Control' (WD On =1) depending on the enabled response monitoring.

7.8 Clock Supply

7.8.1 PLL

In the <u>asynchronous mode</u>, the clock pulse is generated with an integrated oscillator and an analog-PLL in the DPC31. The oscillator pins (XTAL1_CLK and XTAL2) are, as shown in Figure 7.8-1, wired with the values according to Table 7.8.2. The following PLL quadruples the input frequency of 12 MHz (pin XPLLEN = low). The DPC31 now has the internal system frequency of $f_{SYS} = 48 MHz$. It is not possible to connect the PLL with an external clock pulse generator. The internal system clock has an inaccuracy from the external quartz (here assumed to be \pm 150 ppm) plus the inaccuracy of the PLL (\pm 400 ppm). The rise time of the PLL is at 200 μ s after the supply voltage and the external quartz have stabilized.

In the <u>synchronous mode</u>, the lower system frequency ($f_{SYS} = 16/8/4(/2)MHz$) is supplied via an external clock pulse generator directly at pin XTAL1_CLK. The integrated oscillator and the PLL are switched off in that case (pin XPLLEN = high, power-save mode). (2 MHz system frequency is not enabled.)

To connect an external μ Processor, the output CLKOUT1X2 (f_{SYS} /2) and/or CLKOUT1X4 (f_{SYS} /4) can be used. The outputs are active after being switched on -also during the reset phase- and can be switched off via Mode Register0.

The internal processing clock pulse is $f_{SYS}/2$. The bus physics unit is operated with the scanning frequency (4-fold for asynchronous, 16-fold for synchronous).

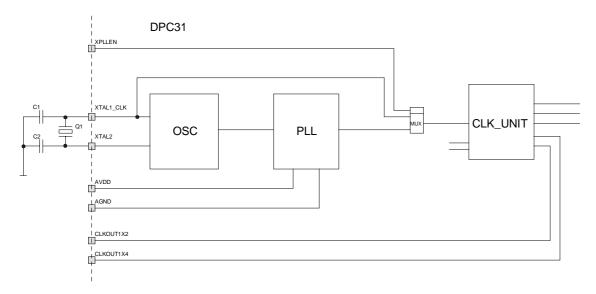


Figure 7.8-1: Block Diagram of Clock Supply

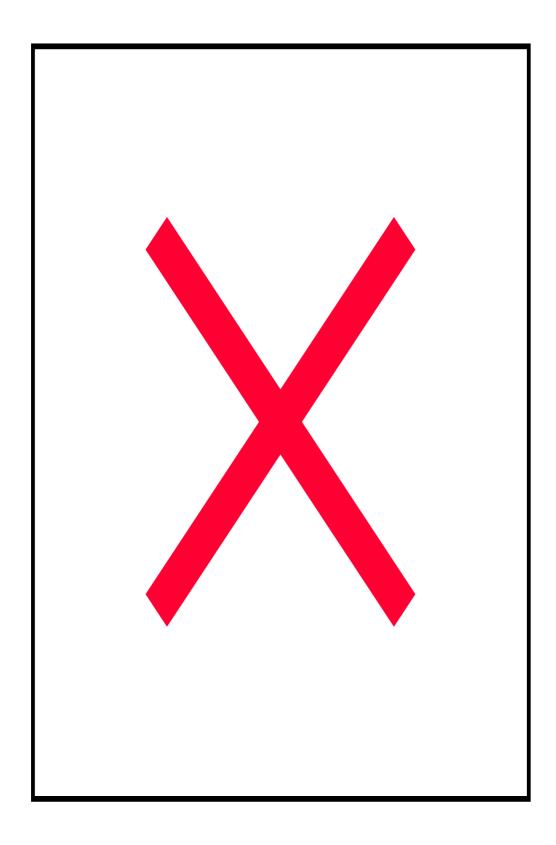
Pin Name	Pad	Comment
XTAL1_CLK	I	Quartz connection / direct clock input (for syn. mode)
XTAL2	0	Quartz connection
XPLLEN	- 1	Selection PLL or clock input
CLKOUT1X2	0	Half of the internal clock (clock for In Circuit Emulator)
CLKOUT1X4	0	Quarter of the internal clock

Table 7.8-1: Pins for the Clock Supply

Component	Value
Q1	12 MHz
C1	35 pF
C2	35 pF

Table 7.8-2: Component Values of Oscillator Wiring

8 Test Support


The DPC31 has three test pins (TST1,NTEST1, NTEST2). For operation, all pins are to be at 0 Volt. To switch the outputs to high-resistance (In Circuit Test), NTEST1/2 are to be at 1.

8.1 Emulator Connection for the C31

To emulate the C31 that is integrated in the DPC31, a standard emulator (such as Hitex MX51AH) can be connected. The interfacing is shown in Figure 8.1-1. The emulator must be used with the SAB-C501-40 or a type compatible with the timing, because of the more relaxed timing of the processor.

Problem Case: If the C165 (@20MHz) without tristate time waitstate for DPC31 accesses <u>and</u> the C31 emulator (@24MHz) are operated together, there may be access conflicts to the internal DPC31 RAM.

Remedy: For accesses by the C165 to the DPC31, the tristate time waitstate is to be set accordingly.

9 Electrical Specifications

9.1 Maximum Limits

Parameters	Name	Condition	Limits	Unit
DC Supply Voltage	V_{DD}		-0.5 to +4.6	V
Input Voltage	V_{l}		-0.5 to +6.6 and V _I < V _{DD} + 3.0	V
Output Voltage	V_{O}		-0.5 to +6.6 and $V_o < V_{DD} + 3.0$	V
DC Output Voltage	Io	$I_{OL} = 3.0 \text{mA}$	10	mA
	Io	$I_{OL} = 9.0 \text{mA}$	30	mA
Operating Temperature	T _{opt}		-40 to +85	°C
Storage Temperature	T _{stg}		-65 to +150	°C
Power Loss for PQFP-100	P _{vmax}		530	mW
Junction Temperature	ϑ_{jmax}		125	°C
R _{th} Junction Case	R _{thj→c}		10 (Meas. Point Center Casing)	K/W
R _{th} Case Ambient	$R_{thc\rightarrow a}$		85	K/W

Table 9.1-1: Maximum Limits

9.2 Permitted Operating Values

Parameters	Name	Min.	Max.	Unit
DC Supply Voltage	V_{DD}	3.0	3.6	V
Input Voltage (low level)	V _{IL}	0	0.8	V
Input Voltage (high level)	V_{IH}	2.0	5.5	V
Input Rise Time	t _r	0	200	ns
Input Fall Time	tf	0	200	ns
Busfight Time	tBF	0	20	ns
Schmitt-Trig. Input Rise Time	t _r	0	10	ms
Schmitt-Trig. Input Fall Time	tf	0	10	ms

Table 9.2-1: Permitted Operating Values

9.3 Guaranteed Operating Range for the Specified Parameters

Parameters	Name	Min.	Max.	Unit
DC Supply Voltage	V_{DD}	3.0	3.6	V
Operating Temperature	T _{opt}	-40	+85	°C

Table 9.3-1: Guaranteed Operating Range of the Specified Parameters

9.4 Power Loss

Power Loss: (all values worst case estimate)
Asynchronous: approx. 450 mW at 12 MBd

Synchronous: approx. 10 mW at 31.25 kBd and 2MHz clock (C31 switched off)

approx. 15 mW at 31.25 kBd and 2MHz clock (C31 core @ 1MHz) approx. 50 mW at 31.25 kBd and 16MHz clock (C31 core @ 8MHz)

Power Loss: (all values measured typically)
Asynchronous: approx. 200 mW at 12 MBd

Synchronous: approx. 3 mW at 31.25 kBd and 2MHz clock (C31 switched off) 3 mW at 31.25 kBd and 2MHz clock (C31 core 1MHz) approx. 5 mW 31.25 kBd and 4MHz clock (C31 core @ 2MHz) approx. at approx. 20 mW at 31.25 kBd and 8MHz clock (C31 4MHz) core @ approx. 43 mW at 31.25 kBd and 16MHz clock (C31 core 8MHz)

9.5 Pad Cells

9.5.1 Power-Up of the Supply Voltage

If the DPC31 is used in modules with mixed voltage supply (3.3V and 5V), the voltage difference between the supply pins ($V_{DD} = 3.3V \pm 10\%$) and the signal pins ($V_{I/O}$) is to be no larger than +3.0V at any time ($V_{I/O} - V_{DD} < 3.0V$). If this value is exceeded, the DPC31 will be destroyed.

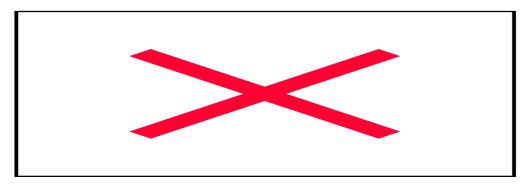


Figure 9.5-1: Voltage Ramp

9.5.2 Structure of the Pad Cells with 5V Tolerance

The input pad cells used have a tolerance of 5V; that is, they are provided with a protective circuit. This means that, although they are supplied internally with only 3.3V, the input level may be 5.5V maximum. Table 9.5-1 shows the operating points.

The 5V-tolerant output pad cells are also provided with a special protective circuit. When driving the 0-level, there is no difference with respect to the conventional pad cells. The 1-level is driven actively up to V_{DD} - 0.3V. Starting with this voltage, the external pull-up resistor pulls the level to V_{DD2} (5V). This pull-up is needed only if a 5V-CMOS input is to be driven. For reasons of interference immunity, TTL-level is recommended.

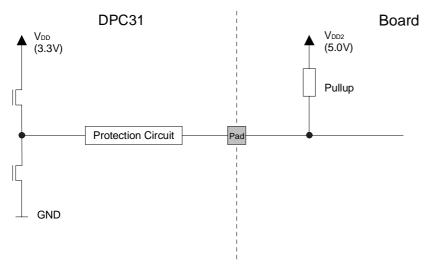


Figure 9.5-2: Wiring of an Output Pad Cell with 5V Tolerance

9.5.3 DC Specification of the Pad Cells

Parameters	Name	Condition	Min.	Тур.	Max.	Unit
Input Voltage 0-Level	V _{IL}		0		0.8	V
Input Voltage 1-Level	V_{IH}		2.0		5.5	V
Output Voltage 0-Level	V_{OL}	$I_{OL} = 0 \text{ mA}$			0.1	V
Output Voltage 1-Level	V_{OH}	$I_{OH} = 0 \text{ mA}$	V _{DD} - 0.2			V
Schmitt Trig. +ve threshhold	V_{P}		1.2		2.4	V
Schmitt Trigve threshold	V_N		0.6		1.8	V
Schmitt Trig. Hysteresis	V_{H}		0.3		1.5	V
Input Leakage Current	I_1	$V_I = V_{DD}$ or GND		±10 ⁻⁵	±10	μΑ
Output Current 0-Level	I _{OL}	V _{OL} = 0.4 V	3			mA
3 mA cell / 5V tolerant Output Current 1-Level 3 mA cell / 5V tolerant	I _{OH}	V _{OH} = 2.4 V	-2			mA
Output Current 0-Level 9 mA cell / 5V tolerant	I _{OL}	$V_{OL} = 0.4 \text{ V}$	9			mA
Output Current 1-Level 9 mA cell / 5V tolerant	I _{OH}	V _{OH} = 2.4 V	-2			mA
Output Current 0-Level 9 mA cell / 3.3V	I _{OL}	$V_{OL} = 0.4 \text{ V}$	9			mA
Output Current 1-Level 9 mA cell / 3.3V	I _{OH}	$V_{OH} = 2.4 \text{ V}$	-9			mA
Tristate Output Leakage Current	I _{OZ}	$V_O = V_{DD}$ or GND			±10	μΑ
Short Circuit Current	I _{OS}	$V_O = 0 V$			-250	mA
Input Capacity	C_{IN}	@ f = 1 MHz		10	20	pF
Output Capacity	C _{OUT}	@ f = 1 MHz		10	20	pF
I/O Capacity	C _{I/O}	@ f = 1 MHz		10	20	pF

Table 9.5-1: DC Specification of the Pad Cells

9.6 AC Specification

9.6.1 Driver Capability

The run times at the chip outputs always depend on the driver capacity of the pad cells as well as on the assumed capacitive load. The capacitive load that was used as a basis for the following timing specifications is shown in Table 9.6-1. To specify the maximum and minimum runtimes, the variations of temperature range and supply voltage range shown in Table 9.3-1 were included also.

Signal Name	Direction	Driver Type	Voltage	Capacity	Load
PA	In/Out	Tristate	5V tolerant	3 mA	120 pF **
PB	In/Out	Tristate	5V tolerant	3 mA	80 pF
PC	In/Out	Tristate	5V tolerant	3 mA	80 pF
PD	In/Out	Tristate	5V tolerant	3 mA	80 pF
ALE	In/Out	Tristate	5V tolerant	3 mA	80 pF
XPSEN ***	In/Out	Tristate	5V tolerant	3 mA	10 pF
XCSDATA	Out	Tristate	5V tolerant	3 mA	80 pF
XCSCODE	Out	Tristate	5V tolerant	3 mA	80 pF
PE	In/Out	Tristate	5V tolerant	9 mA	100 pF
PF	In/Out	Tristate	5V tolerant	3 mA	100 pF
PG	In/Out	Tristate	5V tolerant	3 mA	100 pF
PH	In/Out	Tristate	5V tolerant	3 mA	100 pF
SSCLK	Out	Tristate	5V tolerant	9 mA	100 pF
SSDO	Out	Tristate	5V tolerant	9 mA	100 pF
CLKOUT1X2	Out	Tristate	5V tolerant	9 mA	50 pF
CLKOUT1X4	Out	Tristate	5V tolerant	9 mA	50 pF
RTS_TXE	Out	Tristate	3.3V *	9 mA	50 pF
TXD_TXS	Out	Tristate	3.3V *	9 mA	50 pF

Table 9.6-1: ID Data of the Outputs

If, in reality, the capacitive load deviates from the assumed values, the result will be a change of 0.7 ns maximum per 10pF.

9.6.2 **Timing Diagrams, Signal Run Times**

In general, the following applies: all signals that start with 'X' are 'low active'. The signal runtimes are based on the capacitive loads shown in Table 9.6-1. All timing that refers to the elementary period "T" is defined according to Table 9.6-2.

XPLLEN	Comment	T
1	Direct Clock Supply	1/CLK
0	Quartz Connection (12 MHz) ⇒ Internal Clock: 48 MHz	20.83 ns

Table 9.6-2: Definition of the Elementary Period T

^{**)} including the capacity of the emulation connection (70 pF)

9.6.2.1 Clock Supply (XPLLEN = '1')

No.	Parameters	Min	Max	Unit
1	Clock High Time	7.5		ns
2	Clock Low Time	9.8		ns
3	Rise Time		1	ns
4	Fall Time		1	ns

Table 9.6-3: Input Clock

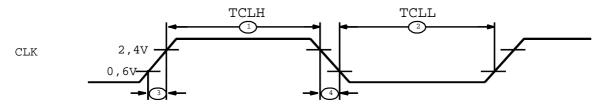


Figure 9.6-1: Clock Timing

9.6.2.2 Clock Outputs

The clock outputs (CLKOUT1X2 and CLKOUT1X4) are active during the RESET also. They are derived from the PLL (when XPLLEN = '0'). The clock outputs thus have the inaccuracy of the PLL (frequency stability: ± 400 ppm; phase jitter: 1.5ns). Refer also to Chapter 7.8.1.

9.6.2.3 Interrupt

After acknowledging an interrupt with EOI, there is at least a 1us or 1 ms wait in the DPC31 prior to a new interrupt being read out.

No.	Parameters	Min	Max	Unit
1	Interrupt Inactive Time (if EOI_Timebase = 0)	1	2	μs
	Interrupt Inactive Time (if EOI_Timebase = 1)	1	2	ms

Table 9.6-4: Interrupt Inactive Time after EOI

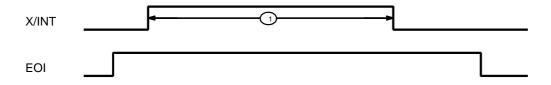


Figure 9.6-2: Peripheral Mode, Interrupt EOI Timing

9.6.2.3.1.1.1 Profibus Interface

No.	Parameters		Min	Max	Unit
1	RTS ↑ to TXD Setup Time XAsyn/Syn = low		4T	4T + T _{BIT}	ns
		XAsyn/Syn = high	0		ns
2	RTS ↓ to TXD Hold Time	XAsyn/Syn = low	5T	6T	ns
		XAsyn/Syn = high	0		ns

T:= elementary period

TBIT: elementary period of the transition clock pulse of the Profibus Interface XCTS_RXA = '0'!

Table 9.6-5: Specification of the Profibus Interface

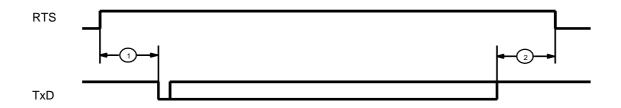


Figure 9.6-3: Transmit Timing, XCTS constant log. '0'

9.6.2.4 μP Interface

9.6.2.4.1 Synchronous Intel Mode (80C32)

No.	Parameters	Min	Max	Unit
1	Address to ALE ↓ Setup time	10		ns
2	Address (AB ₈₁₅) hold time after XRD ↑ or XWR ↑	5		ns
3	XRD ↓ to Data Out (access to RAM)		4T+27	ns
	XRD ↓ to Data Out (access to the registers)		4T+27	ns
4	ALE \downarrow to XRD \downarrow	20		ns
5	Data hold time after XRD ↑	3	8	ns
6	Data hold time after XWR ↑	10		ns
7	Data setup time to XWR ↑	10		ns
8	XRD ↑ to ALE ↑	10		ns
10	XRD Pulse Width	6T – 10		ns
11	XWR Pulse Width	4T		ns
12	Address hold time after ALE \downarrow	10		ns
13	ALE Pulse Width	10		ns
14	XRD, XWR cycle time	6T + 30		ns
15	ALE ↓ to XWR ↓	20		ns
16	XWR ↑ to ALE ↑	10		ns

 Table 9.6-6:
 Timing Values in the Synchronous Intel Mode

In the synchronous Intel mode, the DPC31 stores the least significant address bits with the falling edge of ALE. At the same time, it expects the most significant address bits at the address bus; from them, it generates itself a chip select signal.

The request for an access to the DPC31 is generated from the falling edge of the read signal or the rising edge of the write signal.

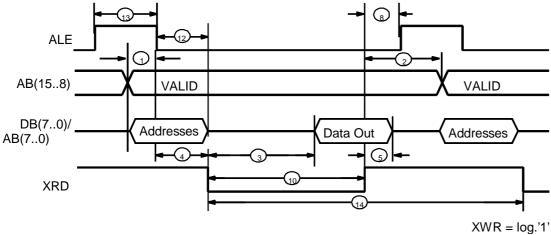


Figure 9.6-4: Synchronous Intel Mode, Processor Read Timing

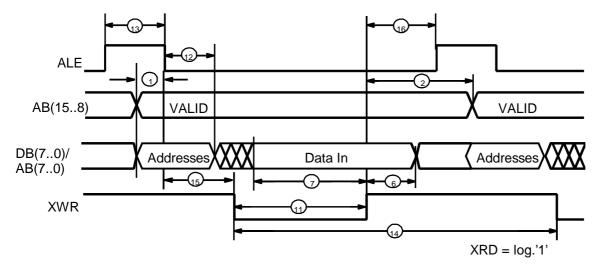


Figure 9.6-5: Synchronous Intel Mode, Processor Write Timing

9.6.2.4.2 Asynchronous Intel Mode (X86 Mode)

In 80X86 operation, the DPC31 in principle behaves like a memory with Ready logic; the access timing depends on the type of access.

The request for an access to the DPC31 is generated from the falling edge of the Read signal or the rising edge of the Write signal.

No.	Parameters	Min	Max	Unit
20	Address setup time to XRD \downarrow or XWR \downarrow	0		ns
21	XRD ↓ to Data valid (access to RAM)		4T+27	ns
	XRD ↓ to Data valid (access to the registers)		4T+27	ns
22	Address (AB ₁₂₀) hold time after XRD or XWR ↑	0		ns
23	XCS $↓$ Setup time to XRD $↓$ or XWR $↓$	-5		ns
24	XRD Pulse Width	6T – 10		ns
25	Data hold time after XRD ↑	3	8	ns
26	Read/Write inactive Time	10		ns
27	XCS hold time after XRD ↑ or XWR ↑	0		ns
28	XRD/XWR ↓ to XRDY ↓ (normal Ready)		5T + 25	ns
29	XRD/XWR ↓ to XRDY ↓ (early Ready)		4T + 25	ns
30	XREADY hold time after XRD or XWR	4	25	ns
31	Data setup time to XWR ↑	10		ns
32	Data hold time after XWR ↑	10		ns
33	XWR Pulse Width	4T		ns
34	XRD, XWR cycle time	6T		ns
35	last XRD ↓ to XCS ↓	4T+10		ns
36	XCS ↑ to next XWR ↑	4T		ns
37	XWR ↑ to next XWR ↑ (XCS don't care)	6T		ns

Table 9.6-7: Timing Values in the Asynchronous Intel Mode

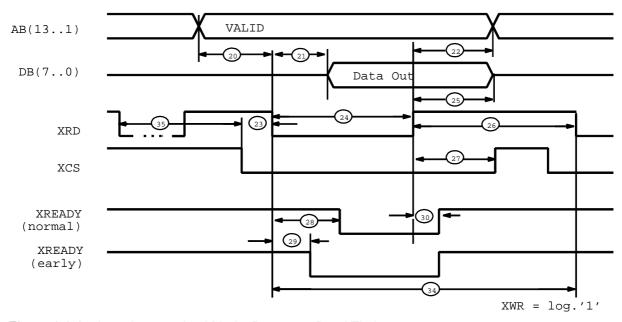


Figure 9.6-6: Asynchronous Intel Mode, Processor Read Timing

The Ready signal is generated by the DPC31 synchronously to the clock supplied and reset by the deactivation the Read or Write signal. With XRD = 1, the data bus is switched to Tristate.

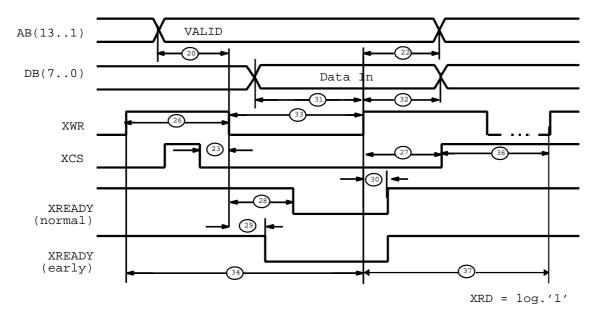
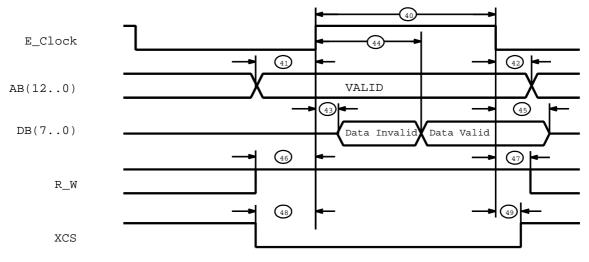
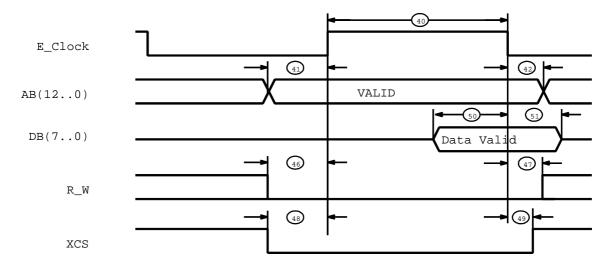


Figure 9.6-7: Asynchronous Intel Mode, Processor Write Timing


9.6.2.4.3 Synchronous Motorola Mode (E_Clock mode; for example, 68HC11)

If the DPC31 supplies the CPU with the clock, the output clock has to be 4 times larger than the E_CLOCK. The DPC31 input clock (CLK) has to be **at least 10 times** larger than the desired system clock (E_Clock). Therefore, the clock output CLKOUT1x4 that specifies the E_Clock of 3 MHz is to be used (asyn. physics). The request for a read access to the DPC31 is generated from the rising edge of the E_Clock (in addition: XCS = '0', R_W = '1') and for a write access from the falling edge of the E_Clock (in addition: XCS = '0', R_W = '0').

No.	Parameters	Min	Max	Unit
40	E_Clock Pulse Width	4T + 67		ns
41	Address (AB ₁₂₀) setup time to E_Clock ↑	10		ns
42	Address (AB ₁₂₀) hold time after E_Clock ↓	5		ns
43	E_Clock ↑ to Data Active Delay	3		ns
44	E_Clock ↑ to Data valid (access to RAM)		4T + 27	ns
	E_Clock ↑ to Data valid (access to the registers)		4T + 27	ns
45	Data hold time after E_Clock ↓	3	8	ns
46	R_W setup time to E_Clock ↑	10		ns
47	R_W hold time after E_Clock ↓	5		ns
48	XCS setup time to E_Clock ↑	0		ns
49	XCS hold time after E_Clock ↓	0		ns
50	Data setup time to E_Clock ↓	10		ns
51	Data hold time after E_Clock ↓	10		ns


Table 9.6-8: Timing Values for the Synchronous Motorola Mode

 $AS = \log.'1'$

Figure 9.6-8: Synchronous Motorola Mode, Processor Read Timing

AS = log.'1' Figure

9.6-9: Synchronous Motorola Mode, Processor Write Timing

9.6.2.4.4 Asynchronous Motorola Mode (for example, 68HC16)

In the asynchronous Motorola mode, the DPC31 behaves in principle like a memory with Ready logic and the access timing depends on the type of accesses.

The request for a Read access to the DPC31 is generated from the rising edge of the AS signal (in addition: XCS = '0', $R_W = '1'$) and for a write access from the rising edge of the AS signal (in addition: XCS = '0', $R_W = '0'$).

No.	Parameters	Min	Max	Unit
60	Address setup time to AS ↓	0		ns
61	AS ↓ to Data valid (access to RAM)		4T + 27	ns
	AS ↓ to Data valid (access to the registers)		4T + 27	ns
62	Address (AB ₁₂₀) hold time after AS ↑	10		ns
63	R_W ↓ setup time to AS ↓	10		ns
64	AS Pulse Width	6T – 10		ns
65	Data hold time after AS ↑	3	8	ns
66	AS inactive time	10		ns
67	R_W hold time after AS ↑	10		ns
68	XCS ↓ setup time to AS ↓	-5		ns
69	XCS hold time after AS ↑	0		ns
70	AS ↓ to XDSACK ↓ (standard Ready)		5T + 25	ns
71	AS ↓ to XDSACK ↓ (early Ready)		4T + 25	ns
72	XDSACK hold time after AS ↑	4	25	ns
73	AS cycle time	6T		ns
74	Data setup time to AS ↑	10		ns
75	Data hold time after AS ↑	10		ns
76	AS Pulse Width	4T		ns
77	last AS ↓ (Read) to XCS ↓	4T+10		ns
78	XCS ↑ to next AS ↑ (Write)	4T		ns
79	AS ↑ to next AS ↑ (Write, XCS don't care)	6T		ns

Table 9.6-9: Timing Values for the Asynchronous Motorola Mode

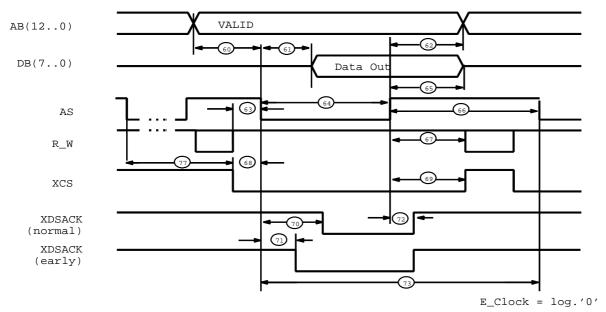


Figure 9.6-10: Asynchronous Motorola Mode, Processor Read Timing

The Ready signal XDSACK is generated by the DPC31 synchronously to the supplied clock pulse and it is reset with the deactivation of the AS signal. AS = 1 switches the data bus to Tristate.

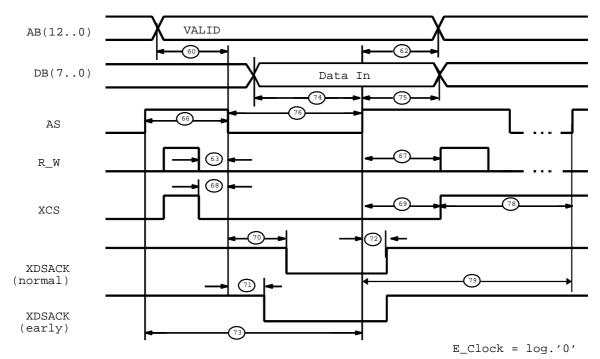


Figure 9.6-11: Asynchronous Motorola Mode, Processor Write Timing

9.6.2.5 C31 Memory Interface (internal C31 on external memory)

Symbol	Parameters	Min	Max	Unit
t _{LHLL}	ALE pulse width	4T – 1.0		ns
t_{AVLL}	Address setup to ALE	2T – 8.8		ns
t_{LLAX}	Address hold after ALE	2T – 9.7		ns
t_{LLIV}	ALE low to valid instr in		8T – 31.6	ns
t_{LLPL}	ALE to XPSEN	2T – 4.7		ns
t_{PLPH}	XPSEN pulse width	6T – 1.5		ns
t_{PLIV}	XPSEN to valid instr in		6T – 27.0	ns
t_{PXIX}	Input instruction hold after XPSEN	0		ns
t_{PXIZ}	Input instruction float after XPSEN		2T + 4.0	ns
t_{AVIV}	Address to valid instr in		10T – 45.6	ns
t_{AZPL}	Address float to XPSEN	0		ns
t _{PLSCL}	XPSEN to XCSCODE		18.3	ns
t _{SCLSCH}	XCSCODE pulse width	6T – 1.5		ns
t_{SCXIX}	Input instruction hold after XCSCODE	0		ns
t _{SCXIZ}	Input instruction float after XCSCODE		2T – 14.3	ns

(C_L for Port A = 120pF; C_L for XPSEN = 10pF; C_L for all others = 80pF)

Table 9.6-10: Timing Values for Accesses to Code Memory

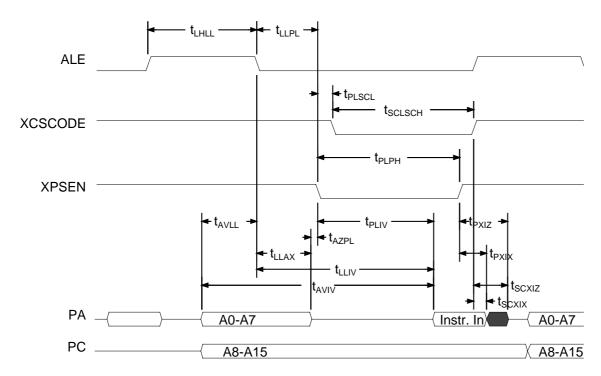


Figure 9.6-12: Code Read Cycle

Symbol	Parameters	Min	Max	Unit
t _{RLRH}	XRD pulse width	12T – 0.7		ns
t_{WLWH}	XWR pulse width	12T – 0.8		ns
t_{LLAX2}	Address hold after ALE	4T + 1.9		ns
t_{RLDV}	XRD to valid data in		10T - 33.9	ns
t_{RHDX}	Data hold after XRD	0		ns
t_{RHDZ}	Data float after XRD		4T + 1.1	ns
t_{LLDV}	ALE low to valid data in		16T – 31.7	ns
t_{AVDV}	Address to valid data in		18T – 41.7	ns
t_{LLWL}	ALE to XWR or XRD	6T + 1.0	6T + 2.5	ns
t_{AVWL}	Address valid to XWR or XRD	8T – 7.3		ns
t_{WHLH}	XWR or XRD high to ALE high	2T – 2.0	2T - 0.,8	ns
t_{QVWX}	Data valid to XWR↓	2T – 6.5		ns
t_{QVWH}	Data setup to XWR	14T – 7.3		ns
t_{WHQX}	Data hold after XWR	2T + 1.7		ns
t_{RLAZ}	Address float after XRD		0	ns
t_{AVSDL}	Address valid to XCSDATA		12.6	ns
t _{SDLSDH}	XCSDATA pulse width	24T - 5.0		ns

(C_L for Port A = 120pF; C_L for XPSEN = 10pF; C_L for all others = 80pF)

Table 9.6-11: Timing Values for Accesses to the Data Memory

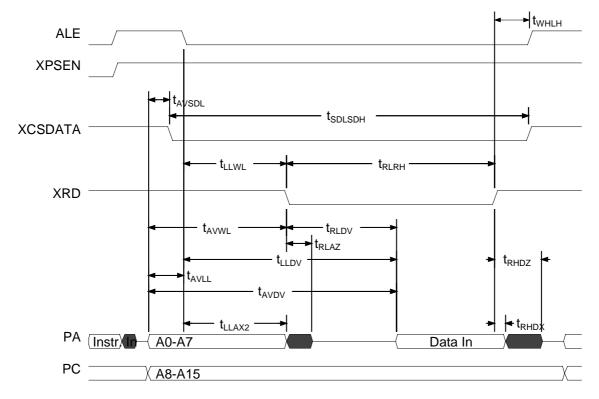


Figure 9.6-13: Data Read Cycle

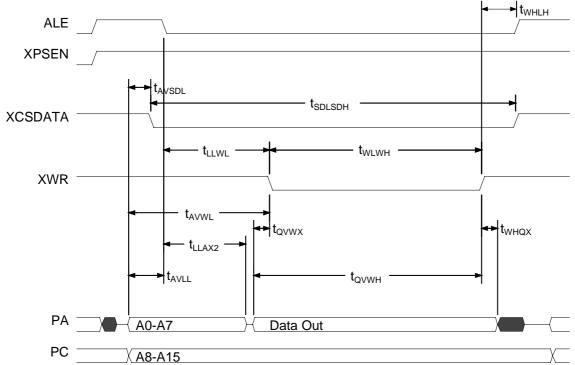
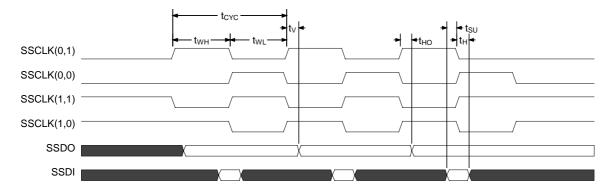


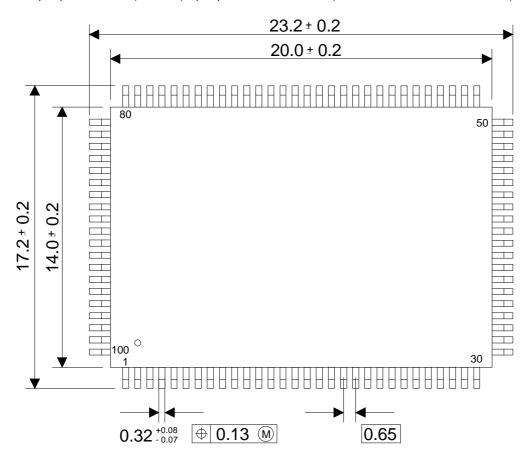
Figure 9.6-14: Data Write Cycle

9.6.2.6 SSC Interface (SPI)

Symbol	Parameters	Min	Max	Unit
f _{SSCLK}	Operating Frequency		12	MHz
t_{CYC}	Cycle Time	83,3		ns
t_{WH}	Clock High Time	40		ns
t_{WL}	Clock Low Time	40		ns
t_{SU}	Data Setup Time (Inputs)		28	ns
t_{H}	Data Hold Time (Inputs)	0		ns
t_V	Data Valid Time after Enable Edge		1,0	ns
t _{HO}	Data Hold Time (Outputs, after Enable Edge)	-1,0		ns

Table 9.6-12: Timing Values of the SSC Interface




Figure 9.6-15: SSC Interface Timing Diagram

10 Mechanical Specification

10.1 PQFP 100 Casing

100 pin plastic QFP (14 x 20) pin pitch = 0.65mm (NEC CODE: S100GF-65-JBT)

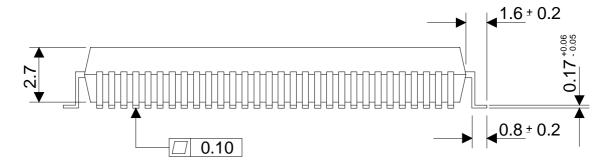
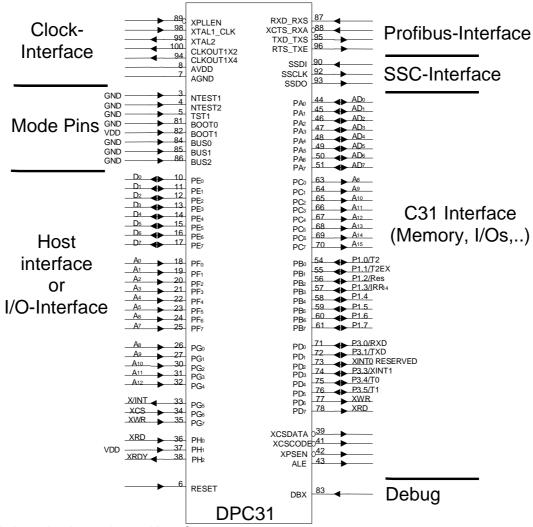


Figure 10.1-1: QFP-100 Casing (all data in mm)

11 DPC31 Pinout

Pin	Name	Тур	Remarks	Pin	Name	Тур	Remarks
1	GND	Supply		51	PA ₇	In/Out	3mA
2	VDD	Supply		52	VDD	Supply	
3	NTEST1	In		53	GND	Supply	
4	NTEST2	In		54	PB ₀	In/Out	3mA
5	TST1	In		55	PB ₁	In/Out	3mA
6	RESET	In	Schmitt-Trig.	56	PB ₂	In/Out	3mA
7	AGND	Supply		57	PB ₃	In/Out	3mA
8	AVDD	Supply		58	PB ₄	In/Out	3mA
9	GND	Supply		59	PB ₅	In/Out	3mA
10	PE ₀	In/Out	9mA	60	PB ₆	In/Out	3mA
11	PE ₁	In/Out	9mA	61	PB ₇	In/Out	3mA
12	PE ₂	In/Out	9mA	62	GND	Supply	
13	PE ₃	In/Out	9mA	63	PC ₀	In/Out	3mA
14	PE ₄	In/Out	9mA	64	PC ₁	In/Out	3mA
15	PE ₅	In/Out	9mA	65	PC ₂	In/Out	3mA
16	PE ₆	In/Out	9mA	66	PC ₃	In/Out	3mA
17	PE ₇	In/Out	9mA	67	PC ₄	In/Out	3mA
18	PF ₀	In/Out	3mA	68	PC ₅	In/Out	3mA
19	PF ₁	In/Out	3mA	69	PC ₆	In/Out	3mA
20	PF ₂	In/Out	3mA	70	PC ₇	In/Out	3mA
21	PF ₃	In/Out	3mA	71	PD ₀	In/Out	3mA
22	PF ₄	In/Out	3mA	72	PD ₁	In/Out	3mA
23	PF ₅	In/Out	3mA	73	PD ₂	In/Out	3mA
24	PF ₆	In/Out	3mA	74	PD ₃	In/Out	3mA
25	PF ₇	In/Out	3mA	75	PD ₄	In/Out	3mA
26	PG ₀	In/Out	3mA	76	PD ₅	In/Out	3mA
27	PG ₁	In/Out	3mA	77	PD ₆	In/Out	3mA
28	GND	Supply		78	PD ₇	In/Out	3mA
29	VDD	Supply		79	VDD	Supply	
30	PG ₂	In/Out	3mA	80	GND	Supply	
31	PG ₃	In/Out	3mA	81	BOOTTYP ₀	In	
32	PG ₄	In/Out	3mA	82	BOOTTYP ₁	In	
33	PG ₅	In/Out	3mA	83	DBX	In	
34	PG ₆	In/Out	3mA	84	BUSTYP ₀	In .	
35	PG ₇	In/Out	3mA	85	BUSTYP ₁	In	
36	PH ₀	In/Out	3mA	86	BUSTYP ₂	In	Och with T !
37	PH₁	In/Out	3mA	87	RXD_RXS	In	Schmitt-Trig.
38	PH ₂	In/Out	3mA	88	XCTS_RXA	In	Schmitt-Trig.
39	XCSDATA	Out	3mA	89	XPLLEN	In	
40	GND	Supply	2 1	90	SSDI	In	
41	XCSCODE	Out	3mA	91	GND	Supply	0 1
42	XPSEN	In/Out	3mA	92	SSCLK	Out	9mA
43	ALE	In/Out	3mA	93	SSDO	Out	9mA
44	PA ₀	In/Out	3mA	94	CLKOUT1X4 TXD_TXS	Out	9mA
45	PA ₁	In/Out	3mA	95		Out	9mA, 3.3V
46 47	PA ₂	In/Out	3mA	96 97	RTS_TXE GND	Out	9mA, 3.3V
	PA ₃	In/Out	3mA		XTAL1_CLK	Supply	
48	PA ₄	In/Out In/Out	3mA	98 99	XTAL1_CLK XTAL2	In Out	
50	PA ₅	In/Out In/Out	3mA	100	CLKOUT1X2	Out	9mA
30	1 A6	iii/Out	SILIA	100	GLNOUTIAZ	Jul	JIIIA


Table 11.1-1: Pin Assignment of the QFP-100 Casing (signals starting with 'X' are low active)

06/99

12 Application Notes

12.1 DPC31 Wiring

Example here: Intel asynchron with 80C165

12.2 PROFIBUS Interface

12.2.1 Pin Assignment

Data is transmitted in the operating mode RS485 (RS485 physics).

The DPC31 is connected to the galvanically isolated interface driver via the following signals:

Signal Name	Input/	Function
	Output	
RTS	Output	Request to Send
TXD	Output	Send Data
RXD	Input	Receive Data

The PROFIBUS interface is implemented as 9-pole SUB D connector with the following pin assignment:

Pin 1 - free

Pin 2 - free

Pin 3 - B line

Pin 4 - Request to Send (RTS)

Pin 5 - Ground 5V (M5)

Pin 6 - Potential 5V (potential free P5)

Pin 7 - free

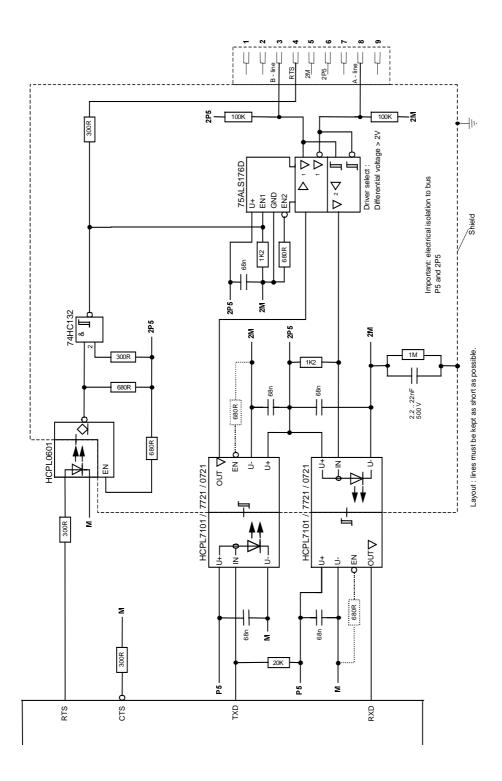
Pin 8 - A line

Pin 9 - free

The line shield is to be connected to the connector housing.

The free pins are used optionally in the EN 50170 Vol.2 and should correspond to this description if the user uses them.

Attention:


The designations **A** and **B** for the lines at the connector correspond to the names in the RS485 standard and not to the pin name of driver ICs.

The line length from the driver to the connector is to be kept as short as possible.

If the higher baudrates of 3 to 12 MBaud are used, suitable connectors are to be used. These connectors compensate for line influences regarding all possible line combinations.

12.2.2 Wiring Example RS485 Interface

Explanation of the Circuit:

At the bus driver 75ALS176D, the EN2 input is to be connected to ground so that the DPC31 can listen in during transmission.

No additional filters are to be installed in the send and receive line in order to keep the capacity of the lines as low as possible (15 .. 25 pF).

06/99

13 Appendix

13.1 Addresses

13.1.1.1.1.1 PROFIBUS Trade Organization

PNO Office Haid-und-Neu-Strasse 7 76131 Karlsruhe/Germany Phone: (0721) 9658-590

13.1.1.1.1.2 Technical Contact Persons at the Interface Center in Germany

Siemens AG A&D SE E32 Martin Mittelberger/Xaver Schmidt

Mailing Address: Postfach 2355 90713 Fuerth/Germany

Street Address: Wuerzburger Strasse 121 90766 Fuerth/Germany

Phone: (0911) 750 2072/2079 Fax: (0911) 750 2100 Mailbox: (0911) 737972

EMail:

Martin.Mittelberger@fthw.siemens.de
Xaver.Schmidt@fthw.siemens.de

13.1.1.1.1.3 Technical Contact Persons at the Interface Center in the USA

PROFIBUS Interface Center 3000 Bill Garland Road Johnson City, TN 37605-1255

Fax: (423) 461-2103 Phone: (423) 461-2576

E-Mail: profibus.center@sea.siemens.com

13.2 General Definitions of Terms

ASPC2 Advanced Siemens PROFIBUS Controller, 2nd Generation

DPS DP Slave
Din Input Data
Dout Output Data

MAC Medium Access Control

MSAC1 Master Slave Acyclic Communication Class1 Master SPC2 Siemens PROFIBUS Controller, 2nd Generation SPC3 Siemens PROFIBUS Controller, 3rd Generation SPM2 Siemens PROFIBUS Multiplexer, 2nd Generation Lean Siemens PROFIBUS Multiplexer, 2nd Generation

DP Distributed IO

FMS Fieldbus Message Specification

MS Micro-Sequenzer
PLL Phase Lock Loop
SM State Machine

13.3 Order Numbers

The DPC31 can be ordered via your Siemens contact person on location. Please use the order numbers with the number of units reference provided below:

Product	Order Number	Delivery Units	No. of Units
ASIC DPC 31	6ES7 195-0BE00-0XA0 6ES7 195-0BE10-0XA0 6ES7 195-0BE20-0XA0 6ES7 195-0BE30-0XA0 6ES7 195-0BE40-0XA0	Mini Package. Single Tray Tray Box 17-Tray Box 34-Tray Box	5 60 300 5100 10200
FW DPV1 DPC 31	6ES7 195-2BB00-0XA0	Diskette	

06/99